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Detection of undesirable events in oil and gas wells can help prevent production losses, environmental accidents,
and human casualties and reduce maintenance costs. The scarcity of measurements in such processes is a
drawback due to the low reliability of instrumentation in such hostile environments. Another issue is the absence
of adequately structured data related to events that should be detected. To contribute to providing a priori
knowledge about undesirable events for diagnostic algorithms in offshore naturally flowing wells, this work
presents an original and valuable dataset with instances of eight types of undesirable events characterized by
eight process variables. Many hours of expert work were required to validate historical instances and to produce
simulated and hand-drawn instances that can be useful to distinguish normal and abnormal actual events under
different operating conditions. The choices made during this dataset's preparation are described and justified,
and specific benchmarks that practitioners and researchers can use together with the published dataset are
defined. This work has resulted in two relevant contributions. A challenging public dataset that can be used as a
benchmark for the development of (i) machine learning techniques related to inherent difficulties of actual data,
and (ii) methods for specific tasks associated with detecting and diagnosing undesirable events in offshore

naturally flowing oil and gas wells. The other contribution is the proposal of the defined benchmarks.

1. Introduction

In the general industrial context, there have been increasing de-
mands for greater operational safety, productivity, quality, and energy
efficiency (Jamsa Jounela, 2007). Complexity, instrumentation, and
automation have increased significantly to meet these demands
(Venkatasubramanian et al., 2003). Control loops, whether manual or
automated, are developed to maintain operations under normal con-
ditions, but there are changes and disturbances which these control
loops cannot handle satisfactorily. Faults occur in these situations
(Russell et al., 2000).

The term “fault” is defined in (Russell et al.,, 2000) as an un-
permitted deviation of at least one characteristic behavior or process
variable. Aldrich and Auret in (Aldrich and Auret, 2013) define fault as
anomalous behavior causing systems or processes to deviate un-
acceptably from their normal operating conditions or states. The review

provided by Venkatasubramanian et al. (2003) defines fault as an ab-
normality or process symptom, such as high temperature in a reactor or
low product quality. This review also defines the underlying cause(s) of
a fault, such as a failed coolant pump or a controller, as the root cause(s)
or basic event(s), which are also referred to as malfunction(s) or failure
(s). Since root cause analysis is not the focus of our work, for simplicity,
all these terms are generalized as undesirable events.

Detection and classification of rare undesirable events are tasks that
are relevant and in vogue in several activities carried out and/or
monitored by human beings. Some examples are flow influx detection
during drilling (Tang et al., 2019); leak detection and location in water
and oil pipelines (Liu et al., 2019); fault detection in industrial plants
(Arrudaet al., 2014), (Peter He and Wang, 2007), (Xavier and de Seixas,
2018), in oil wells (Liuet al., 2011), (Liuet al., 2010a), (Liuet al.,
2010b), in Electrical Submersible Pumps (ESPs) (PatriAnand et al.,
2014), and in gas compressor valves (Patri et al., 2015a), (Patriet al.,
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2016); abnormal event detection in oil wells (Santoset al., 2018),
(Vargas et al., 2017), in Electroencephalography (EEG) (Unget al.,
2017), and in Electrocardiography (ECG) (Anthony et al., 2017);
power-quality disturbance detection (Gray and Morsi, 2015), (Gaing,
2004); and handgun detection (Olmos et al., 2018).

The task of responding to abnormal events in a process involves the
timely detection of an abnormal event, diagnosing its root causes, and
then taking appropriate control decisions and actions to bring the
process back to a normal, safe, and operational state. This entire ac-
tivity has come to be called Abnormal Event Management (AEM).
Diagnosis in automated AEM can be viewed as a classification problem,
and classification algorithms can be categorized in terms of their
knowledge and search strategies (Venkatasubramanian et al., 2003).

The application of machine learning algorithms to data obtained
from processes is a search strategy that has been used successfully,
especially in recent years. Machine learning methods have been applied
in different tasks, such as prediction of downhole working conditions of
the beam pumping unit (Li et al., 2018), well-testing model classifica-
tion from pressure transient test data (Ahmadi et al., 2017), automatic
analysis of real-time drilling data, and detection of flow influx events
(Tang et al., 2019). In (Bhattacharya and Mishra, 2018), machine
learning algorithms are applied for facies and fracture classification in
conventional and unconventional reservoirs. In (Xavier and de Seixas,
2018), a method is proposed that allows fault diagnosis, as well as
detection, without any tunable parameters and that can be used with
large volumes of data with very little information. Methods for fault
detection are proposed in (Arrudaet al., 2014), (Peter He and Wang,
2007). A method that can detect the accumulation of hydrate in pro-
duction or injection lines of oil wells with at least 1h in advance is
presented in (Santoset al., 2018). A specific transformation on each
monitored variable is performed in (Vargas et al., 2017) before classi-
fication itself by machine learning algorithms to avoid model recali-
bration even in dynamic systems. Classification of time series is em-
pirically evaluated in 39 datasets in (Li et al., 2016). Methods for failure
prediction in oil wells are proposed in (Liuet al., 2011), (Liuet al.,
2010a), (Liuet al., 2010b). Other works related to algorithms for time
series classification are published in (Patriet al., 2014), (Patri et al.,
2015b), (Geurts, 2001), (Xi et al., 2006).

In oil and gas wells, AEM can help prevent production losses, en-
vironmental accidents, and human casualties and reduce maintenance
costs. The catastrophic Macondo incident that occurred in 2010 due to
the failure of safety equipment exemplifies the potential magnitude of
losses and costs. The deaths of 11 workers, the sinking of the Deepwater
Horizon rig, and the massive marine and coastal damage marked this
incident as one of the largest environmental disasters in US history
(Sutherland et al., 2016). In terms of maintenance, the cost of a mar-
itime probe to repair a production line, for example, can exceed US
$500,000 per day (Andreolli, 2016).

In the middle of 2017, Petréleo Brasileiro S.A., known as Petrobras,
conceived its first project designed to evolve its existing AEM in oil and
gas wells. This project, entitled “Monitoramento de Alarmes
Especialistas (MAE)”, was conceived at the Petrobras Operational Unit
located in the Brazilian state of Espirito Santo (UO-ES). The idea was to
complement (and overlap with automatic suppressions) the current
system based on parametric univariate alarms with machine learning
algorithms applied to Multivariate Time Series (MTS) obtained from the
processes. The formal definition of MTS considered in this work is
presented in Section 2.5. The main goal of the MAE project was to
develop a new automated AEM capable of detecting and classifying
occurrences of eight specific types of undesirable events in offshore
naturally flowing wells that are in a normal state in a shorter time with
better performance. This scope was established with the following
justifications: (i) MTS, used in a priori domain knowledge composition,
are highly available; (ii) machine learning algorithms have been shown
to be a suitable search strategy for this type of knowledge; (iii) naturally
flowing wells are less complex and are therefore good candidates for
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technological innovation projects; (iv) gains in offshore wells are po-
tentially higher given their higher average production compared to
onshore wells (Andreolli, 2016); (v) the selected types of undesirable
events had been responsible for most of the production loss in the UO-
ES in the last years. It is estimated that during 2016 the production loss
was 1,514,000 bbl (barrels), which corresponds to US$75.7 million if
we consider an average value of US$50/bbl in this period.

Some authors of this article participated in the conception of the
MAE project and are still working on its development. Even after ex-
tensive research, no public or private dataset with enough undesirable
events in terms of quantity and diversity in oil and gas wells has been
found so far.

One of the private datasets found is part of the Electric Submersible
Pump - Reliability Information and Failure Tracking System (ESP-
RIFTS) (FER Technologies, 2018a), developed by the ESP-RIFTS “Joint
Industry Project (JIP)” and maintained by the C-FER Technologies (FER
Technologies, 2018b). The goal of the ESP-RIFTS is to improve the run
life of ESPs significantly. Its dataset is composed of information ex-
tracted from about 112,000 ESP installations from about 800 fields
operated by 26 companies around the world. However, this dataset
does not contain any time series associated with physical quantities of
processes. Only two datasets with MTS acquired from processes were
found, both owned by Petrobras and not public. The first one consists of
11 occurrences (four simulated and seven real) of four types of un-
desirable events and was used in (Vargas et al., 2017). The second
contains 12 real occurrences of only a single type of undesirable event
and was explored in (Santoset al., 2018). Even together, these last two
datasets do not have sufficient undesirable events in terms of quantity
or diversity.

In public repositories (Dua and Taniskidou, 2017), (Dau et al.,
2018), (Anthony et al., 2018), (Chen, 2018), (Istituto Nazionale di
Statistica), only datasets associated with other contexts were found.
Besides, in general these datasets are pretreated and become unrealistic
at some level. Some examples of pretreatment are elimination or re-
placement of not a number (NaN) values or of frozen variables (due to
sensor, system configuration, or network communication issues); con-
sideration of only time series with necessarily equal sizes or with only
simulated data; and balancing in relation to quantities of occurrences
per type of undesirable event.

As a result of this research, it was decided to generate a dataset to be
used in the development of automated AEM with machine learning
algorithms. That is the 3W' dataset's origin, to the best of its authors'
knowledge, the first realistic and public dataset with rare undesirable
real events in oil wells.

This work gave rise to two relevant contributions. The first one is
the 3W dataset, which has been made available in the supporting re-
pository (Vargas et al., 2019) for this paper and can be readily used as a
benchmark dataset for development of machine learning techniques
related to inherent difficulties of actual data. An enormous number of
possibilities in terms of, for example, preprocessing (normalization,
NaN values, missing values, frozen variables, outliers, etc.), filters
(smoothing, resampling, etc.), transformations (multiscale, wavelet,
etc.), family of classifiers (based on trees, artificial neural networks,
distances, ensembles, etc.), hyperparameter optimization, feature en-
gineering, and performance metrics can be investigated using this da-
taset. Furthermore, these possibilities can be explored in specific tasks
associated with detecting and diagnosing undesirable events in offshore
naturally flowing oil and gas wells, such as early classification (He
et al., 2013), (Xing et al., 2011), (Xing et al., 2009); novel fault de-
tection (Krawczyk et al., 2017); and one-class (Krawczyk et al., 2017),
binary (Krawczyk et al., 2017), multi-class (Krawczyk et al., 2017),
multi-label (Zhang and Zhou, 2007), online, and offline classification.

! The name 3W was chosen because this dataset is composed of instances from
3 different sources and which contain undesirable events that occur in oil Wells.
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More information about each one of all these tasks can be obtained in
(Aldrich and Auret, 2013), (James et al., 2013), (Witten et al., 2011),
(Hastie et al., 2009), (Christopher, 2006), (Duda et al., 2001). The
second contribution of this article is the specification of challenges
(benchmarks) that practitioners and researchers can use together with
the 3W dataset.

The remainder of this article is organized as follows. The next sec-
tion addresses the background required for a good understanding of
what is proposed in this paper. Section 3 describes how the 3W dataset
was prepared. The proposed specific benchmarks are defined in Section
4. The last section is dedicated to the conclusions of this work.

2. Background
2.1. Offshore naturally flowing wells

An oil well refers to a set of sensors and mechanical, pneumatic, and
hydraulic systems that may be partially or fully installed on the seabed,
downhole (the well itself), or on the surface (Pierre, 2007). Nowadays,
there are different artificial lift techniques (Andreolli, 2016), such as
beam pumps, gas lift, and electric submersible pumps, but the scope of
this work considers only offshore naturally flowing wells.

Naturally flowing wells are those whose reservoir pressure is suffi-
cient to produce hydrocarbons at a commercial rate without requiring
any additional energy. This situation can occur in both offshore and
onshore wells. This type of well tends to have less equipment and
therefore less instrumentation, control loops, and automation. Fig. 1
presents a schematic that corresponds to an offshore scenario. The oil
and gas flow from a reservoir through production tubing and then
through a production line to a platform. A subsea Christmas tree is a
type of equipment installed on the seabed and is basically composed of
valves and sensors operated remotely through an electro-hydraulic
umbilical. A Permanent Downhole Gauge (PDG) and a Temperature and
Pressure Transducer (TPT) are devices that contain pressure and tem-
perature sensors, respectively. The PDG remains fixed in a certain po-
sition of the production tubing, and the TPT is part of the subsea
Christmas tree. A Downhole Safety Valve (DHSV) and a Production Choke
(PCK) are valves and are better explained in the next subsection.

It is important to note that naturally flowing wells can also be
equipped to be operated with artificial lift methods under certain cir-
cumstances. That is, it is not uncommon for a well to be operated in an
intercalated fashion between an artificial lift technique and the natural
method.

As mentioned in the introduction section, it was decided that the
MAE project would focus on offshore naturally flowing wells that are in

PRODUCTION
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Fig. 1. Simplified schematic of a typical offshore naturally flowing well.
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a normal state. In this state, the well continues producing without
significant occurrences of anomalies. Therefore, all the occurrences of
undesirable events present in the 3W dataset started from a normal
state. The two mutually exclusive states considered by Petrobras spe-
cialists are called closed-in (when there is no flow at all) and starting up
(a transient state between closed-in and normal state).

The most common monitored variables in Petrobras offshore natu-
rally flowing wells are present in the 3W dataset and are listed below.
This list takes into account the cost-benefit ratio of having in-
strumentation in certain positions and also whether the instrumentation
is reliable enough despite the hostility of the environment.

® Pressure at the PDG;

® Pressure at the TPT;

e Temperature at the TPT;

® Pressure upstream of the PCK;

e Temperature downstream of the PCK.

2.2. Types of undesirable events in oil wells

The selected types of undesirable events in the MAE project and
therefore present in the 3W dataset are described next. It is important to
clarify that there is not always consensus regarding names and what
these types of undesirable events mean, even among experts. That is
why they are detailed next.

1 Abrupt Increase of BSW

Basic Sediment and Water (BSW) is defined as the ratio between the
water and sediment flow rate and the liquid flow rate, both measured
under normal temperature and pressure (NTP) (Andreolli, 2016), (Abass
and Bass, 1988).

During the life cycle of a well, its BSW is expected to increase due to
increased water production from either the natural reservoir aquifer or
artificial injection to avoid declining production. However, a sudden
increase of BSW can lead to several problems related to flow assurance,
lower oil production, oil lifting, incrustation, industrial plant proces-
sing, and the recovery factor. Automatic identification of this type of
undesirable event may permit actions such as administering production
or artificial injection to avoid this sort of problem.

2 Spurious Closure of DHSV

DHSYV, also referenced as just DSV, is a safety valve installed in the
production tubing of wells. Its goal is to ensure closing of the well in
case of a situation in which the production unit and well are physically
disconnected or in the event of an emergency or catastrophic failure of
surface equipment. It is set in a fail-safe mode such that any interrup-
tion or malfunction of the system will result in the safety valve closing
to make the well safe (Schlumberger, 2018), (Standards Norway, 2013).

Eventually, this closure function fails in a spurious manner, often
without any indication on the surface (e.g., pressure drop in the hy-
draulic actuator). Automatic identification of spurious closing of this
valve in a timely manner may allow it to be reopened through correc-
tive operational procedures, avoiding production losses and additional
costs.

3 Severe Slugging

This is a critical type of instability. The two most striking features of
this event are the well-defined periodicity (around 30, 45, or 60 min)
and the intensity, which is generally sufficient to be detected by sensors
along the entire production line (Meglio et al., 2012), (Schmidt et al.,
1985).

Depending on the periodicity and intensity, this type of event can
result in stress or even damage to equipment in the well and/or the
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industrial plant. When it is detected in advance, specific actions in the
operation of the well can be taken to reverse the situation.

4 Flow Instability

During a flow instability, at least one of the monitored variables
undergoes relevant changes but with tolerable amplitudes. A char-
acteristic that differentiates this type of undesirable event from severe
slugging is the lack of periodicity between these changes (Theyab,
2018), (Takeiet al., 2010).

As instability can progress to severe slugging, its prognosis avoids
all the negative aspects associated with this more severe anomaly.

5 Rapid Productivity Loss

The productivity of a naturally flowing well depends on several
properties: static pressure reservoir, percentage of basic sediment and
water, viscosity of the produced fluid, diameter of the production line,
and so on (Hausler et al., 2015).

When these properties are changed so that the system's energy is no
longer sufficient to overcome the losses, the flow slows or even stops.
Automatic identification of this condition in a timely manner may allow
the operation team to change the operating point of the well so that it
does not lose its productivity.

6 Quick Restriction in PCK

The PCK is a control valve installed at the beginning of the pro-
duction unit and is responsible for well control at the surface. The ex-
pression “quick restriction in PCK” is not well defined in the literature
but is an English version of a term that is widely used internally at
Petrobras. For this expression to be correctly used, the restriction must
occur with an amplitude above a stipulated reference (e.g., 5%) and in a
short time (e.g., less than 10s).

When this type of valve is manually operated, unwanted quick re-
strictions may eventually occur due to operational problems.
Identifying this event automatically is also desirable because unwanted
restrictions can be reversed more quickly.

7 Scaling in PCK

Monitoring the production choke is important due to the suscept-
ibility of inorganic deposits, which can dramatically reduce oil and gas
production (Schlumberger, 2018).

Automatic identification of this condition in a timely manner is also
desirable because appropriate actions, such as scale inhibitor injection,
can be taken to avoid oil and gas production losses.

8 Hydrate in Production Line

Hydrate is one of the biggest problems in the oil industry. It is de-
fined as a crystalline compound that is formed by water and natural gas
and therefore resembles ice. As its formation requires the presence of
water and natural gas, in addition to high pressures and low tempera-
tures, oil pipelines in which dead oil flows do not suffer from this type
of anomaly. Its occurrence is more frequent in gas pipelines and gas
producing wells. However, hydrates can also be formed in oil-produ-
cing wells, to the point of totally interrupting their flow (Andreolli,
2016), (Ellison et al., 2000).

Avoiding occurrences of this type of undesirable event means
avoiding production losses for days or even weeks. In certain cases,
high costs of unblocking the production line are also avoided.

2.3. Response times

To confirm real occurrences of each considered type of undesirable
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Table 1
Estimates of time window sizes used to confirm occurrences of undesirable
events.

TYPE OF UNDESIRABLE EVENT WINDOW SIZE

1 - ABRUPT INCREASE OF BSW 12h

2 — SPURIOUS CLOSURE OF DHSV 5 min-20 min
3 — SEVERE SLUGGING 5h

4 — FLOW INSTABILITY 15min

5 — RAPID PRODUCTIVITY LOSS 12h

6 — QUICK RESTRICTION IN PCK 15min

7 — SCALING IN PCK 72h

8 — HYDRATE IN PRODUCTION LINE 30min-5h

event, professionals who perform well monitoring at Petrobras usually
analyze time windows of different sizes whose estimates are presented
in Table 1. These window sizes can be used as additional information to
improve the performance of machine learning algorithms.

2.4. Machine learning

Machine learning is a subfield of artificial intelligence, directly as-
sociated with computer science. The main characteristic of an algo-
rithm that performs machine learning is the existence of some sys-
tematized learning mechanism from examples (also called objects,
occurrences, or instances). This type of algorithm works in two phases
(Faceli et al., 2011):

e Training: an initial phase during which learning takes place. The
approximation of the function, or model takes place at this stage;

e Use: the phase in which learning is actually used in new objects (not
used in the training phase) to solve the task of interest. This stage
represents the detection and classification part of automated AEM.

This work considers mainly predictive algorithms that perform clas-
sification (Faceli et al., 2011). The variables of the MTS acquired from
the processes and the types of undesirable events are used respectively
as input and output attributes.

The diversity of approaches used by these algorithms has grown
considerably, and they give rise to families of algorithms. Some of the
main ones are based on neural networks, support vector machines,
trees, distances, Bayes' theorem, and boosting. There are so many
possibilities that to explain them goes beyond the scope of this article.

2.5. Multivariate Time Series

In this work, the following definition of Multivariate Time Series
(MTS) is adopted, which is similar to those used in (Zhou and Chan,
2015), (Weng, 2013), (He et al., 2013).

A dataset DS is a set of m MTS
Sili={1, 2,...,m},)V meZ, andm>1) and is defined as
DS = {S!, §2,...,8™}. Each MTS i is an instance (also referenced in this
paper as object or occurrence), that is composed of a set of n univariate
time series (x} lj={1, 2,..,n},V ne€ Z, andn > 1) (also referenced as
process variable or just variable), and is defined as S' = {x{, xl,..,x[}.
Each variable j that composes an MTS i is an ordered temporal se-
quence of p,  observations taken at the time ¢
&, 1t={1, 2,..p;}, ¥ p; €Z, and p, > 1). Therefore, each MTS i is
viewed in  this work as a  matrix  defined as
S'= iy X31eXn 13 Xis XdoswensXp 23 i X g5 X3 pysvees Xy}

Note that all instances have a fixed number of variables n, but each
instance can be composed of any quantity of observations p;. It is also
important to note that all variables of an instance i have fixed number
of observations p;.
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3. 3 W Dataset's preparation

This section explains the choices made during the 3W dataset's
preparation and then describes its fundamental aspects. We do not
claim that these choices are optimal, but we argue that they are rea-
sonable enough and that they gave rise to a benchmark dataset for
development of several kinds of techniques and methods for different
tasks associated with undesirable events in oil and gas wells.

The 3W dataset is composed of three types of instances that are
determined by their sources: real, simulated, and hand-drawn. Real
instances are those that actually occurred in Petrobras' actual wells
during oil production. The use of simulated and hand-drawn instances
is fundamentally intended to decrease the imbalance of the dataset
initially formed only by real instances, which is a common character-
istic in industrial data (He et al., 2013), (Krawczyk et al., 2017). A
possible approach to this is to accomplish re-sampling of real instances.
In (Chawla et al., 2002), for example, a method is proposed that per-
forms over-sampling of the minority class (rare events) and under-
sampling of the majority class (normal condition). Our strategy is en-
tirely different and seeks to enrich the a priori knowledge (dataset) with
more instances obtained from different sources: simulations, and hand-
drawn curves by specialists in the problem domain.

Two types of labeling were carried out by experts on each un-
desirable events. The first one occurred at the instances' level. Each
instance, whether real, simulated, or hand-drawn, was necessarily la-
beled with a single code associated with normal operation or some code
associated with the undesirable event existing at some point within the
instance. Note, therefore, that no instance contains more than one un-
desirable event. Two benefits deriving from this type of labeling are
that it provides a grouping of instances depending on the type of un-
desirable event they contain and that it allows the development of
offline classifiers, those that do not aim to estimate when the event
started or ended inside each instance. The second type of label was
applied at the observation's level. Each observation of each instance of
any type was labeled with a single code associated with normal op-
eration or some code associated with the undesirable event existing at
that instant. This type of label is essential for online classifier training.

Labeling at the observation's level was done so that each instance of

ol =
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any type has up to three periods normal, faulty transient, and faulty
steady state. A period in this work means a continuous sequence of
observations. In normal periods, there is no evidence of any type of
anomaly. In faulty transient periods, the dynamics resulting from an
undesirable event are still ongoing. When these dynamics cease, the
faulty steady state period begins. The primary purpose of this strategy
was to provide the possibility of early classification. That is, faulty
transient periods can be learned, and their accurate detection predicts
the period faulty steady state. In other words, the faulty transient
period can be interpreted as an undesirable pre-event period. Fig. 2 and
Fig. 3 bring examples of real instances labeled as normal and abnormal,
respectively. In both cases, only the three most relevant variables for
their types of events, according to specialists, are presented. Different
periods are marked with different colors: green for normal, yellow for
faulty transient, red for faulty steady state, and white for not labeled
observations (due to the used tool limitations).

All real instances were extracted from the plant information system
used to track the industrial processes of the UO-ES (PI System (OSIsoft,
2018)). This extraction was done without preprocessing to maintain
their realistic aspects, such as NaN values, frozen variables (due to
sensor or network communication issues), instances with different sizes,
and outliers. This strategy allows evaluating which preprocessing
techniques in raw data result in better performance in each task of
interest to be developed. The processes used to generate simulated and
hand-drawn instances (computer simulation and hand-drawn curves)
gave rise to time series naturally free of such problems.

All simulated instances were obtained with OLGA (Schlumberger), a
dynamic multiphase flow simulator adopted by several oil companies
around the globe (Andreolli, 2016). This choice was done because
OLGA is the standard tool used at Petrobras for the simulation of sce-
narios in oil wells and also because it is one of the few systems that
simulate dynamic phenomena (faulty transients) (Ingebrigtsen Grgdahl,
2014). Simulation of rare undesirable real events was prioritized. The
threshold used to differentiate rare events was 1%, the same criterion as
was used in (Zhang and Zhou, 2007). With this criterion, those types of
events whose number of real occurrences represents less than 1% of all
real instances, including normal ones, are considered rare.

A specific tool was developed for the 3W dataset to be enriched with

-
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Fig. 2. Screenshot of a real instance labeled as normal. T-TPT is frozen.
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Fig. 3. Screenshot of a real instance labeled as abnormal (quick restriction in PCK).

hand-drawn instances, which naturally includes the tacit knowledge of
experts regarding the format of the MTS that characterizes the types of
undesirable events that were considered. Two rare undesirable real
events were prioritized, one that was simulated using OLGA and an-
other that not. The developed tool is composed of a chart template and
a script for image processing. Fig. 4 illustrates the use of this chart
template, in which an expert drew one curve by hand, and specified all
its attributes: variable, type of event, instance identification, beginning
of the normal, faulty transient, and faulty steady state periods, and
scales.

The 3W dataset is available in the supporting repository (Vargas
et al., 2019) for this paper with the following structure and general
characteristics. Each instance, whether real, simulated, or hand-drawn,
was saved in a standardized and dedicated Comma-Separated Values
(CSV) file. All CSV files were grouped into directories based on the
instance label. All instances were generated with observations obtained
with a fixed sampling rate (1 Hz). Only the following units were used:
Pascal [Pa], standard cubic meters per second [sm3/s], and degrees
Celsius [°C]. The source of each instance was incorporated on the name
of its CSV file. All actual well names were replaced by generic names as
a requirement of Petrobras for the 3W dataset's publication.

Table 2 shows the quantities of instances that compose the 3W
dataset by type of event and by knowledge source: real, simulated, and
hand-drawn instances. When considering the threshold of 1% and only
real instances, four types of undesirable events are rare: codes 1, 6, 7,
and 8. If simulated instances are also considered, three of these types
cease to be rare: codes 1, 6, and 8. Even after considering the hand-
drawn instances, one type of undesirable event remains rare: code 7.

Fig. 5 shows a scatter map with all the real instances. The oldest one
occurred in the middle of 2012 and the most recent one in the middle of
2018. In addition to the total number of considered wells, this map
provides an overview of the occurrences distributions of each un-
desirable event over time and between wells.

The main 3W dataset's fundamental aspects related to inherent
difficulties of actual data are:

e Missing variables: 4,947 (31.17% of all 15,872 variables of all 1,984

instances). When all observations of a variable in a particular in-
stance have missing value due to sensor or network communication
issues, this variable itself is considered missing. The more missing
variables, the more sparse the dataset becomes, which can impose
additional difficulties to the algorithms;

e Frozen variables: 1,535 (9.67% of all 15,872 variables of all 1,984
instances). When all observations of a variable in a particular in-
stance have any single float or integer value due to any reason, this
variable itself is considered frozen. A frozen variable does not al-
ways represent a problem, but this characteristic is a symptom of
sensor, system configuration, or network communication issues.
Therefore, the problematic frozen variables do not manifest the
patterns associated with the undesirable events, which indeed im-
pose additional difficulties to the algorithms;

e Unlabeled observations: 5,130 (0.01% of all 50,913,215 observa-
tions of all 15,872 variables of all 1,984 instances). Some observa-
tions were not labeled due to the used tool limitations. Even with
this percentage, some technique should be used to treat the un-
labeled observations.

4. Proposed benchmarks

Two specific benchmarks that practitioners and researchers can use
together with the 3W dataset are proposed in this section. This proposal
goal is to provide a standardized and appropriate means for algorithms,
implemented by diverse participants with different techniques and
approaches, to have their performances assessed and compared.

These benchmarks were designed for online binary classification®
only. All observations from faulty transient and faulty steady state
periods must be relabeled as positives and all observations from normal
periods as negatives. In this operation, unlabeled observations must be

2In binary classification, only two labels are involved. In the context of this
work, offline classification is the task whose goal is to estimate a single label for
each MTS. A batch learning process that extracts features only of entire MTS is
used. On the other hand, in online classification, label estimation and feature
extraction are done for multiple subparts of each MTS.
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Fig. 4. Illustration of chart template filled out by a specialist.

Table 2
Quantities of instances that compose the 3W dataset.
TYPE OF EVENT REAL SIMULATED HAND- TOTAL
DRAWN
INSTANCES
0 - NORMAL 597 - - 597
1 - ABRUPT INCREASE OF BSW 5 114 10 129
2 — SPURIOUS CLOSURE OF 22 16 - 38
DHSV
3 — SEVERE SLUGGING 32 74 - 106
4 — FLOW INSTABILITY 344 - - 344
5 — RAPID PRODUCTIVITY LOSS 12 439 - 451
6 — QUICK RESTRICTION IN PCK 6 215 - 221
7 — SCALING IN PCK 4 - 10 14
8 — HYDRATE IN PRODUCTION 3 81 - 84
LINE
TOTAL 1025 939 20 1984

kept as they are.

Aspects not included in benchmarks' rules can be evaluated and
chosen freely. Some of these aspects are preprocessing techniques,
window size (sample size), number of samples, approach to labeling
samples, and feature engineering methods.

4.1. Impact of using simulated and hand-drawn instances

This benchmark was designed to investigate the impact of using
simulated and hand-drawn instances in machine learning algorithm
training for detection and classification of rare undesirable events in
real instances. The following rules must be observed:

Rule 1: Only the event types 1 or 7 must be chosen. It is not allowed
to merge them in the same classification. Just these event types have
instances from the three sources (real, simulated, and hand-drawn).
Therefore, this benchmark poses two distinct challenges.

Rule 2: Regardless of the source, only instances labeled as of the
chosen type can be used. Those with different labels cannot be used. In
other words, only CSV files saved in the directory whose name is the

chosen type can be used. Besides, all these files must be used.

Rule 3: Multiple rounds of training and testing must be performed
with the scheme that we named “leave one real instance out”. The
number of rounds must be the number of real instances. In each round,
seven pipelines must use different training sets, but precisely the same
testing set composed by only one real instance left out of the training
set. All other real instance must be used in the training set. Each real
instance must be left out only once. From the instance in the testing set,
the same number of samples of each label (positive and negative) must
be extracted. Each pipeline must be implemented so that its training set
is composed by any number of instances per source, as follows:

e Pipeline 1: only real instances;

e Pipeline 2: only simulated instances;

e Pipeline 3: only hand-drawn instances;

e Pipeline 4: only real and simulated instances;

® Pipeline 5: only real and hand-drawn instances;

e Pipeline 6: only simulated and hand-drawn instances;
® Pipeline 7: real, simulated, and hand-drawn instances.

Rule 4: In each round, precision, recall, and F1 score® must be
computed, but others may also be considered. Mean value and standard
deviation of each metric between all rounds must be presented. Mean
value of the F1 score must be considered the main performance metric.

4.2. Anomaly detection

This benchmark intends to encourage the development, evaluation,
and comparison of anomaly detecting algorithms. In this task, un-
desirable events (anomalies) must be distinguished from the normal
condition. The following rules must be observed:

Rule 1: Only real instances with an undesirable event type that have
a normal period (1, 2, 5, 6, 7, and 8) longer than or equal to 20 min

3 The F1 score is the harmonic average of the precision and recall; reaches its
best value at one (perfect precision and recall) and worst at zero (scikit-learn
developers).
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Fig. 5. Scatter map of real instances of the 3W dataset.

must be used. Those with different labels cannot be used. In other
words, only CSV files saved in a directory whose name is one of these
types can be used. Besides, all these files from all these directories must
be used.

Rule 2: Multiple rounds of training and testing must be performed.
The number of rounds must be the number of instances. In each round,
the following pipeline must be implemented. Samples used for training
or testing must be extracted from just one instance. Part of the negative
samples must be used for training, and the other for testing. All positive
samples must be used for testing only. Therefore, a technique of one-
class learning (Krawczyk et al., 2017) must be used. The testing set
must be composed of the same number of samples of each label (posi-
tive and negative).

Rule 3: In each round, precision, recall, and F1 score must be
computed, but others may also be considered. Mean value and standard
deviation of each metric between all rounds must be presented. Mean
value of the F1 score must be considered the main performance metric.

5. Conclusion

The 3W dataset, an original and valuable resource with instances of
eight types of undesirable events that may happen in offshore naturally
flowing oil and gas wells, is proposed in this paper. The events are
characterized by eight process variables, and the resulting dataset can
be readily used as a benchmark for the development of machine
learning techniques related to inherent difficulties of actual data. This
resource can also be explored in tasks associated with detecting and
diagnosing undesirable events in such wells.

A brief description of offshore naturally flowing wells and the un-
desirable events is followed by details about the dataset preparation, so
that the reader may understand the benchmark and apply machine
learning techniques.

Specific benchmarks that practitioners and researchers can use to-
gether with the published dataset are defined. Along with the proposed
dataset, these challenges are expected to be a significant motivation to
the community of engineers and scientist who develop machine
learning and data analytics methods for the oil and gas field.

As future work, we intend to explorer methods already published in
the literature at the context of the proposed benchmarks to conduct
several investigations. For example, which types of undesirable events
suffer from concept drift (i.e., changes in events signatures which occur
over time and deteriorate the performance of the learned models
(Krawczyk et al., 2017))?; which preprocessing techniques,

transformations, and family of classifiers generate better performances?
We also plan to evolve the 3W dataset in the aspects that prove ne-
cessary.
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