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ABSTRACT
R is a popular language and programming environment for
data scientists. It is increasingly co-packaged with both re-
lational and Hadoop-based data platforms and can often be
the most dominant computational component in data ana-
lytics pipelines. Recent work has highlighted inefficiencies
in executing R programs, both in terms of execution time
and memory requirements, which in practice limit the size of
data that can be analyzed by R. This paper presents ROSA,
a static analysis framework to improve the performance and
space efficiency of R programs. ROSA analyzes input pro-
grams to determine program properties such as reaching def-
initions, live variables, aliased variables, and types of vari-
ables. These inferred properties enable program transfor-
mations such as C++ code translation, strength reduction,
vectorization, code motion, in addition to interpretive opti-
mizations such as avoiding redundant object copies and per-
forming in-place evaluations. An empirical evaluation shows
substantial reductions by ROSA in execution time and mem-
ory consumption over both CRAN R and Microsoft R Open.

1. INTRODUCTION
R is a popular programming language for data analy-

sis [30,35,39,45]. It is the most popular data mining tool [16],
and is the third-most used data analysis language after SQL
and Excel [32]. R is also nearly always co-packaged/embedded
with Hadoop and relational data processing platforms (e.g., [4,
9, 10, 15, 17, 18, 22]), making it a crucial part of contempo-
rary data analytics workflows. Given the close integration
of R and databases, speeding up R has been a recurring
topic in the database research community [40, 50, 51], and
this research follows that line of thinking.

R has a dynamic, lazy, functional, object-oriented lan-
guage semantics [35], and is interpreted [20]. Although highly
expressive, interpretive execution of R programs has space
and runtime inefficiencies that are overwhelming when an-
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alyzing large datasets [40], limiting the size of the datasets
that can be analyzed with R.

For example, consider the Simple Arithmetic program in
Listing 1 that computes the distances from a given point
to a list of points. This program uses two lists (x and y)
of 1 Billion elements (n <- 1e9) each. Increasing the list
sizes to 9 Billion elements causes the R interpreter to abort
evaluation on our system with 256 GB of memory, as the
program runs out of memory. This behavior is surprising
since the two lists have a total of 18 Billion (8 byte) double-
precision elements, thus requiring less than 140 GB of main
memory. However, when we run this program on a machine
with 256 GB of main memory, the program crashes as it runs
out of memory space. There are significant overheads in the
R interpreter, and these issues surface prominently when
R code is packaged with data platforms that manage large
datasets. Thus, improving the behavior and performance of
R programs is crucial for contemporary data platforms.

Listing 1: Simple Arithmetic in R (program from [40,50])� �
1 n <- 1e9

2 xs <- 0.5

3 ys <- 0.5

4 x <- runif(n)

5 y <- runif(n)

6 d <- sqrt((x-xs)^2+(y-ys)^2)� �
The focus of this paper is on exploring if the limitations of

R discussed above can be mitigated by using compiler tech-
niques (such as [33, 42, 47]). To the best of our knowledge
there hasn’t been any previous study that catalogs the list
of potentially applicable compiler techniques that are appli-
cable in this setting, and systematically determines which of
these can be made to work synergistically with each other
and with the idiosyncrasies that come with the R language.
A key contribution of our paper is addressing this gap. Ta-
ble 1 shows a list of static analyses and corresponding opti-
mizations that we have developed in this paper to address
this research question.

Implementing these techniques can be challenging. One
can certainly build each technique individually as a stan-
dalone technique/package, but a better way is to incorporate
these techniques as first-class analyses into a compiler. This
integrated compiler-based approach is what we take in this
paper, creating an R-optimization framework called ROSA.
This integrated approach enhances ease-of-use for the end
user, and also enables reuse of analysis results across op-
timizations; e.g., type inferencing results can be used for
vectorization, strength reduction, and code translation.
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Table 1: Static analyses techniques, with the associated Optimizations in square brackets, for our workloads. For example, the
Simple Arithmetic program is improved by the Space Reuse optimization which is enabled by live variable and alias analyses.

Analysis [Optimizations] Workload Status

Type Inference [Translation to C++ code and compilation]

Binary Search Automated

2D Random Walk Automated

Euclidean Distance Automated

OddCount Automated

Exponential Smoothing Automated

Discrete Value Time Series, ver. A Automated

Discrete Value Time Series, ver. B Automated

Live Variable and Alias Analyses [Space Reuse] Simple Arithmetic Automated

Reaching Definitions Analysis [Vectorization + Code Motion] Simple Vectorization Automated

Type Inference [Strength Reduction (Float → Int)]

Unique Genotypes Test

User-Input

Type Inference [Strength Reduction (Float → String)] User-Input

Type Inference [Strength Reduction (Float → String) + Code Motion] User-Input

Type Inference [Strength Reduction (DataFrame → Matrix)] Kmeans User-Input

Loop Analysis [Loop Tiling] Matrix Multiplication User-Input
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Figure 1: System Architecture

To illustrate, with our Space Reuse optimization, the R
interpreter can process the Simple Arithmetic program dis-
cussed above with 18 billion elements.

A crucial aspect of our design is that large parts of it
can work without requiring modifications to the existing R
programs. This aspect is important as a big driver behind
the popularity of R is the large code base of user code and
CRAN packages that are already deployed. Our approach
is to use a compiler-based approach as outlined in Figure 1.

The left side of Figure 1 shows a high-level schematic of
the traditional workflow for executing R programs. The
right side of this figure shows the new workflow with ROSA.
In the traditional workflow, the R interpreter directly eval-
uates the given R program and its inputs. During evalu-
ation it executes any precompiled portions directly on the
host machine. In ROSA, the program along with its inputs
is first analyzed by the Static Analyzer to determine vari-
ous properties at each point in the program. These proper-
ties can then be inspected by the ROSA Optimizer for vari-
ous transformations, e.g., vectorization, code motion, C++
code translation, etc. This optimized code is then evaluated.
The inferred program properties are also used during evalu-
ation by the R interpreter to avoid making redundant object
copies and perform in-place computations, if possible.

Our system automates the optimizations shown in Table 1
that are marked with the status tag ‘Automated’; i.e. these
techniques work without requiring any changes to existing R
programs. Due to inherent characteristics of the R language
(discussed further in Section 6.2), the remaining optimiza-
tions require user feedback. However, we note that even
unmodified program can benefit dramatically with ROSA,
as demonstrated by the results presented in Section 6.

The key contributions of this paper are as follows.

1. We propose the ROSA framework that integrates compiler-
based optimization techniques with R’s evaluation frame-
work. We demonstrate using an empirical evaluation
that ROSA improves performance, and has a smaller
memory footprint compared with both Microsoft R
Open and CRAN R.

2. We propose a type inferencing system that generates
crucial information necessary for automated transla-
tion of R programs to efficient C++ code. While
speeding up of R programs using C++ code is known,
type inferencing for automated translation into C++
code has not been hitherto explored. Type inferencing
information is also useful for vectorization and strength
reduction transformations.

3. We show how enhancements to the R interpreter, that
utilize live variable analysis and alias analysis infor-
mation, can overcome the space inefficiencies of the
existing copy-on-write policy of R. We also highlight
the importance of strength reduction transformations
in improving performance of R programs by reducing
or eliminating costly type-conversion operations.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the required preliminaries. Section 3 presents
a more detailed architecture of ROSA. Section 4 describes
relevant static analysis techniques. Section 5 describes the
optimizations that use the inferred program properties. Sec-
tion 6 presents empirical results. Section 7 covers related
work and Section 8 contains our concluding remarks. The
Appendix includes code for the R programs that we use.
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2. BACKGROUND AND KEY ISSUES
Next, we present background related to how R works. In

addition, to motivate the optimizations discussed in Sec-
tion 5, we also discuss the key causes for space and time
inefficiencies in the R interpreter.

2.1 Interpretation
R is an interpreted language. Program statements are in-

terpreted by an eval function that looks up values of sym-
bols and implementation of operators while evaluating the
expression in the given environment. Interpretation of every
operator results in a call to a function that implements the
operator. For example, an expression of the form a+b will re-
sult in a lookup for the + operator and the internal function
do_arith will be called to perform the operation. Expres-
sions such as a[x] result in calling the do_subset function or
the do_subassign function. Repeated lookups and function
calls can be very expensive, particularly when they happen
repeatedly, e.g, in loops. This interpretive nature of R re-
sults in the creation of a large number of temporary variables
that can have a very high execution overhead. An example
illustrating this issue is shown in Appendix A.

Compiling R code to C/C++ is a known technique to
improve efficiency [25, 26, 27, 41, 42]. Generating C/C++
code and executing compiled code leads to significant perfor-
mance improvements to R programs. One important chal-
lenge in automatic translation of R programs to C/C++ is
to statically determine variable types in the program/target
subroutine so that proper declarations, object iterators, and
access methods can be generated. Translation to C/C++
is not possible without type information. Simple type infer-
encing can be helpful, as illustrated in Appendix A.

2.2 Copy-on-write Semantics
In an assignment of the form y <- x, both x and y point

to the same memory location, unless one of them is written
to, in which case a copy is made. However, a copy may
not be needed if the other variable is not live beyond that
point; i.e., its value is no longer needed. Restricting copies
can save memory space especially when dealing with large
objects, such as long vectors.

Listing 2: Copy-On-Write� �
1 n <- 1e8

2 x <- rep(1,n)

3 y <- x

4 x[2] <- 3

5 y[2] <- 3� �
The Copy-On-Write example, Listing 2, illustrates how

live variable analysis can reduce memory overheads. Due
to the copy-on-write semantics of R, the assignment on line
3 does not create a new allocation, but the assignments on
lines 4 and 5 do. The R interpreter internally maintains a
named field for every S-expression. The value of this field
can be 0 (not shared), 1 (internal use), or 2 (may be shared).
The assignment on line 3 sets the named field to 2 for the
object pointed to, in this case, the long vector. The assign-
ments on lines 4 and 5 notice that there may be a shared
value, and creates copies of the vector with the named field
set to 0 in the copies. The copy on line 5 can always be
avoided, but R does not track the set of variables that point
to the same object. Hence, it cannot determine that after

line 4, x and y are no longer aliased. Moreover, if x and
y no longer live beyond line 4, then the copy on line 4 can
be avoided. In fact, the assignment on line 4 need not be
performed in this example.

Instead of copy-on-write, a more efficient semantic would
be to have copy-on-write-and-live-sharers. That is, a copy is
needed during modification of an aliased object only if some
of the other aliases may live beyond that point.

2.3 Attribute Evaluations
R maintains attributes (meta-data) for each object. Some

important attributes are “class” (class of the object) used by
a dispatch function, “dim” (dimension) used for arrays and
matrices, “dimnames” (names of dimensions), “rownames”,
“colnames”, “names”, and “tsp” used for time-series objects.

Listing 3: Kmeans [40]� �
1 A <-read.table(file="airline150M.csv",

sep=",", header=T, nrows

=149545445 ,...)

2 gc(T)

3 system.time(result <- kmeans(na.omit(A)

,2,iter.max=1000, algorithm="Lloyd"))

4 gc(T)� �
Some computation is performed by the R interpreter to

maintain attributes during interpretation of an R program.
Depending on the size of the object and the attribute, this
step can be quite costly. An illustrative example of this
overhead for the Kmeans program, Listing 3, is shown in
Appendix B where we discuss how implicit conversion from
a dataframe object to a matrix can be inefficient. In Sec-
tion 6 we present a reduction transformation to avoid this
overhead.

Listing 4: Unique Genotypes Test [37,38]� �
1 NG.test <- function(X,N,n,reps){

2 L <- length(X)

3 G <- numeric ()

4 for(i in 1:reps){

5 genos <- matrix(NA,N,L)

6 for(j in 1:L){

7 genos[,j] <- sample(c(0,1),size=N,

replace=TRUE ,prob=c(1-X[j],X[j])

)

8 }

9 geno.c <- numeric ()

10 for(j in 1:N){

11 geno.c[j] <- paste(genos[j,],sep=

"",collapse="")

12 }

13 G[i] <- length(unique(geno.c))

14 }

15 G

16 }

17
18 X <- rbeta (29 ,.2 ,.2)

19 N <- 29

20 n <- 15

21 reps <- 100000

22 system.time(xx <- NG.test(X=X,N=N,n=n,

reps=reps))� �
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2.4 Type Conversions (particularly, ToString)
R statements consist of one or more S-expressions that

can be of different types such as integer, string, list, etc. A
lot of time can be lost due to conversion between types.

The Unique Genotypes Test [37, 38], Listing 4, samples
values from 0 and 1, and then finds the number of unique
patterns. A key time-consuming operation in this program
is the paste operation, internally implemented by R using
the do_paste function. This function converts its arguments
into strings, if they are not already strings. The elements
0 and 1 passed to the sample function on line 7 in List-
ing 4 are floats. Conversion from float to string is expen-
sive. Changing the inputs to “0” and “1” causes them to
be treated as strings and avoids the type conversion alto-
gether. The Kmeans example discussed in Section 2.3 also
suffers from type conversion overheads caused by attribute
evaluations.

Knowledge of how the inputs will be used including type
information can help to identify strength reduction opportu-
nities that can reduce/eliminate these conversion overheads.

2.5 Memory Management
During the course of evaluation of S-expressions, memory

for temporary and program variables are allocated by the
memory allocator and reclaimed by the garbage collector
when not needed. Memory management can be expensive if
thresholds are not properly set [40].

The Simple Arithmetic program, Listing 1, highlights an
overhead discussed in prior work [40, 50]. The issue here is
that a new allocation is made for the intermediate result
x− xs and another one for y− ys. This allocation step can
use up a lot of space if x and y are large vectors. However,
if we can utilize the information that x and y are not needed
after this computation, then their memory spaces can be
reused for computation. This determination can be enabled
by live-variable analysis—neither x nor y are live beyond
this point.

The following example shows another scenario where al-
locations can be avoided with in-place computations if vari-
ables are no longer live beyond that point. The statement
x[-1] returns an object with all except the first element of
x, and can reuse the space of x if the original object x is not
needed again.� �
1 n <- 1e8

2 x <- as.double(sample (1:100 ,n,TRUE)

3 y <- x[-1]� �
Avoiding allocations for large temporary objects helps to

reduce the maximum memory resident set size (RSS). This is
important since if RSS exceeds the available physical mem-
ory on the system, thrashing will happen leading to higher
(swap) disk I/O and significantly reduced performance. A
larger RSS also reduces the memory that is available to other
applications, such as a co-packaged database server/service.

Just having live information available during interpreta-
tion is not sufficient. The R interpreter should also have
access to operation implementations that leverage liveness
information to compute in-place and reduce memory usage.

2.6 Non-Vectorized Computations
Repeated computations during interpretation of statements

in loops cause overheads. Vectorization is a well-known tech-

nique to improve R performance [33]. For example, the Sim-
ple Vectorization program, Listing 5, adds two vectors ele-
ment by element in a loop (x[i]=y[i]+z[i]). The repeated
interpretation within the loop can be avoided by removing
the loop and using vectorized addition (x=y+z), leading to
significant performance benefits. Automatically detecting
opportunities for vectorization requires determining loop in-
duction variables and absence of loop-carried dependencies.

Listing 5: Simple Vectorization [33]� �
1 n <- 1e8

2 x <- runif(n)

3 y <- runif(n)

4 z <- vector(length=n)

5 system.time(for(i in 1:n) z[i] <- x[i]

+ y[i])� �
Listing 6: 2D Random Walk [42]� �

1 rw2d1 = function(n = 100) {

2 xpos = numeric(n)

3 ypos = numeric(n)

4 for(i in 2:n) {

5 delta = if(runif (1) > .5) 1 else -1

6 if (runif (1) > .5) {

7 xpos[i] = xpos[i-1] + delta

8 ypos[i] = ypos[i-1]

9 }

10 else {

11 xpos[i] = xpos[i-1]

12 ypos[i] = ypos[i-1] + delta

13 }

14 }

15 return(list(x = xpos , y = ypos))

16 }

17
18 n = 1e7

19 system.time(b <- rw2d1(n))� �
The 2D Random Walk example, Listing 6, incurs over-

head due to repeated calls to the random number gener-
ator function, runif. On every call, an internal function
requests the memory allocator to allocate space to copy
the working state of 624 integers for the Mersenne Twister
pseudo-random number generator [34]. However, runif can
be vectorized to generate multiple random numbers in a sin-
gle call (runif(n)), resulting in a single allocation request,
and hoisted out of the loop. To enable this vectorization,
loop index variable and loop bounds analyses are needed to
determine the arguments to pass to a vectorized runif.

2.7 Cache Access Patterns

Listing 7: Matrix Multiplication [40]� �
1 n <- 1073741824

2 A <- matrix(sample(c(1:100 ,NA),n,T),

ncol =4194304)

3 B <- matrix(sample(c(1:100 ,NA),n,T),

nrow =4194304)

4 gc(T)

5 system.time(C <- A %*% B)

6 gc(T)� �
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Figure 2: ROSA architecture. Components are tagged by shaded ovals with the section number where that aspect is discussed.

R interprets matrix data in column-major order. However,
implementations of some operations, e.g., matrix multipli-
cations of matrices with NA values (as in the Matrix Mul-
tiplication program, Listing 7) cause memory accesses with
poor cache locality. The R implementation of the matrix
multiplication operator %*% accesses matrix A in row-order
and matrix B in column-order. A more cache-friendly access
pattern is to access A in column-order as well. Changing
the access order can reduce overheads due to cache misses.
Analyses that determine data dependencies and reuse across
loop iterations [48] can help identify these opportunities.

3. ROSA ARCHITECTURE
Figure 2 shows a detailed view of the architecture of ROSA.

The R program, along with its inputs, are first parsed by the
R parser (available as part of the standard R package) to cre-
ate the internal representation (IR) of the code. This IR is
a list of structures called S-expressions that represent the
syntax tree of the given program. This is the same IR that
the R interpreter uses during traditional evaluation. This
IR is then processed by the Static Analyzer as follows:

1. The AST Builder applies transformations to the orig-
inal syntax tree (e.g., transforms if/for/while state-
ments and function definitions into “normal” forms, for
ease of later processing), annotating it with program
structure information (e.g., loop bodies).

2. The CFG Builder recursively processes the syntax tree
to extract the Control Flow Graph (CFG) for the pro-
gram with each statement as a node in the graph.

3. The Fixed-point Iterator applies data flow equations
and type inferencing rules to determine program prop-
erties that can be used to decide how to optimize the
given program. Section 4 discusses these analyses in
detail.

Appendix C shows a detailed example of the IR, CFG, and
inferred types for a program.

Next, the Optimizer uses the inferred properties to apply
various transformations as follows:

• The C++ Code Generator uses the results of type in-
ferencing to create (efficient) C++ code. This code is

then compiled using g++ to create a shared library.
This library will be invoked during evaluation using
R’s “.Call” interface. Currently we generate code only
for a subset of R types.

• The Vectorizer identifies vectorization opportunities,
e.g., in the Simple Vectorization code, Listing 5.

• The Code Motion Transformer identifies loop-invariant
computations and hoists them outside of the loop. This
can happen, e.g., due to vectorization (vectorized code
is moved out of the loop), repeated allocations (such
as in the Unique Genotypes Test, Listing 4), etc.

• The Strength Reducer identifies opportunities for sub-
stituting data types in the input code to other data
types for more efficient processing, e.g., in the Kmeans

program, Listing 3, and Unique Genotypes Test.

Section 5 discusses these optimizations in more detail.
Currently, a few of these optimizations, e.g., strength reduc-
tion, require user input for their transformations. Table 1
shows the current status of the optimizations.

Apart from the transformations, the program properties
determined by the static analyzer is used by the R inter-
preter to avoid unnecessary object copies so that existing
allocated space can be reused, e.g., for the Simple Arithmetic
program, Listing 1. Section 5.1 discusses this optimization.

4. STATIC ANALYSES
Once the CFG is available, the static analyzer iterates

over the CFG for each analysis and determines facts that
are true at the entry and exit nodes of each basic block.
The iterations terminate when a fix-point is reached; i.e.,
facts do not change on further application of analysis rules.
The same facts are generated regardless of the order of basic
blocks considered in every iteration. We will now briefly
describe the key analyses.

4.1 Live Variables Analysis
The goal of this analysis is to determine the set of variables

that are live at each program point. Variables that are not
live (i.e., dead) do not have their values used later in the pro-
gram before possible re-definition. Space allocated for dead
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variables can be used for other purposes. This analysis can
help the R interpreter avoid (or reduce) making unnecessary
memory allocations for objects.

Let live in(j) denote the set of variables that are live; i.e.,
their values will be used before re-definition, at the entry of
basic block j. live in(j) is augmented by gen(j) which is the
set of generated variables; i.e., the set of variables appearing
in the RHS of the statements in the basic block. gen(j)
is thus the set of variables whose values are used before re-
definition in this basic block. live in(j) is reduced by kill(j)
which is the set of killed variables; i.e., the set of variables
appearing in the LHS of the statements in the basic block.
kill(j) is thus the set of variables whose values are re-defined
in this basic block.

Let live out(j) denote the set of variables that are live at
the exit of the basic block j. This is equal to the union of all
variables that are in live in at the entry points of successor
basic blocks.

The analysis equations are given below. This is a back-
ward dataflow analysis.

live in(j) = gen(j)
⋃

(live out(j)− kill(j))

live out(j) =
⋃

i∈succ(j)

live in(i)

4.2 Alias Analysis
At a given point in a program, a variable can point to one

of a number of possible locations. An alias set is a set of
variables with at least one mutually common location that
they may point to. The goal of this analysis is to determine
alias sets. We perform a flow-sensitive analysis [29,49].

Let alias out(j) denote the set of alias sets at the exit of
basic block j. alias out(j) is augmented by gen(j) which is
the set of aliases generated by copy assignments such as x=y,
x<-y, or x<<-y in the basic block. alias out(j) is reduced
by kill(j) which is the set of killed variables, that is, the set
of variables appearing in the LHS of statements that are not
copy assignments in the basic block. kill(j) is thus the set
of variables that no longer have earlier alias relations after
this basic block. Every variable in kill(j) is removed from
all alias sets in alias in(j).

Let alias in(j) denote the set of aliases at the entry of the
basic block j. This set is equal to the union of all alias sets
that are in alias out at the exits of the predecessor basic
blocks.

The analysis equations are given below. This is a forward
dataflow analysis.

alias in(j) =
⋃

i∈pred(j)

alias out(i)

alias out(j) = gen(j)
⋃

(alias in(j)− kill(j))

4.3 Reaching Definitions Analysis
The goal of this analysis is to determine the set of state-

ments that create (i.e., define) variable values that may
reach the current statement. This information can be checked
to determine, for example, if there can be any reaching def-
initions within the current loop for variables involved in the
current statement. A statement with no such definition can
be hoisted outside the loop.

Similar to alias analysis, this is also a forward dataflow
analysis. gen(j) consists of statements that define variable

values. Any such statement also kills all reaching definitions
for the variables being assigned to in this statement. kill(j)
is the set of statements whose definitions were killed in this
basic block. The analysis equations are given below.

reach in(j) =
⋃

i∈pred(j)

reach out(i)

reach out(j) = gen(j)
⋃

(reach in(j)− kill(j))

4.4 Type Inferencing
Type inferencing for program variables is crucial for au-

tomatically generating C++ code that can be compiled and
executed much faster than interpreting the given program.
In this subsection we give a brief overview of datatypes in
R and our type inferencing rules.

Types in R are either basic (atomic) or constructed from
basic types.

T ::=TB #basic types

TC #constructed types

4.4.1 Basic Types

TB ::=NULL

TNB #Non-NULL basic types

TNB ::=expr #e.g., 1 + 2, x− y
TNBE #Non-{NULL|expr} basic types

TNBE ::=raw #e.g., 00, 02

logical #TRUE,FALSE,NA

integer #Z e.g., 1L, 2L

double #R e.g., 1, 2.3

complex #C e.g., 0 + 1i

string #e.g., ‘c′, ‘abc′

In R, the double data type is called “numeric” and the
string data type is called “character”. The value NA (Not
Available) is a logical constant, but it has an equivalent
representation for the other TNBE types, except raw, e.g.,
NA integer , NA complex , etc.

4.4.2 Constructed Types
For the following, we use the notation 〈 〉 to denote a

sequence. We use “. . .”’ as a convenience to avoid expanding
the full notation.

TC ::= vector(t) t ∈ {TNB ∪ list}
list(〈t〉) t ∈ T
factor(〈integer〉, 〈string〉)
matrix(t) t ∈ {TNB ∪ list}
dataframe(〈vector(t)|factor(. . .)〉)

t ∈ {TNBE ∪ list}
array(t) t ∈ {TNB ∪ list}
function(list(...), tr) tr ∈ T

A vector is a sequence of elements all of the same type.
It is a datatype with a single dimension, the vector length,
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which is equal to the number of elements in the sequence.
An array is a datatype with multiple (≥ 1) dimensions. A
matrix is a datatype with two dimensions. Like vectors, all
elements of any array or matrix must be of the same type.
On the other hand, a list is a sequence of elements where
each element can be of a different type.

A dataframe is a sequence of vectors of the same type. It
is a datatype with two dimensions, and all elements in the
same column have the same type since they they belong to
the same vector. In addition, all column vectors are of the
same length. A key difference between a dataframe and a
matrix is that all elements in the entire matrix are of the
same type.

A factor is a datatype that is commonly used to repre-
sent categorical data. It uses two sequences to correspond
to a given sequence of (categorical) data elements. The first
sequence of the factor represents the data elements as a se-
quence of integers, with each value being the position of the
corresponding element in the second sequence (called levels).
The levels of the factor consists of the unique elements, rep-
resented as strings, in the given data elements.

4.4.3 Attributes
Objects in R have attributes in addition to data. These

track additional information beyond the type of the object.
For example, dimensions tracks the number of dimensions of
arrays, dim in an integer vector with each element tracking
the size of the corresponding dimension of matrices, arrays
or dataframes, nrow and ncol are integers that track the
number of rows and columns respectively while rownames
and colnames are string vectors that track their names. For
objects (e.g., vectors, lists), length (technically not an at-
tribute in R) tracks the number of elements while names
tracks their names. The class attribute supports object-
oriented programming by tracking the class whose methods
need to be invoked. Users can also add their own attributes.

Attribute values need to satisfy some constraints depend-
ing on the data type. For example, the product of nrow and
ncol must equal the number of elements, etc. Attributes val-
ues can be overwritten by the user in which case the object
may be resized with NA filled in for missing values.

For our example programs, checking for the potential use
of the rownames attribute is most useful as it can avoid
performing costly string conversions at run-time as discussed
in Section 2.3 in the context of the Kmeans example.

4.4.4 Type Rules
Every variable having a basic type is a 1-element vector

of that type. For brevity, we will sometimes use vector(t) at
places where a single element of type t is expected.

Table 2 shows a subset of type rules for various operations
relevant to our examples. Each rule shows a horizontal line
that separates the premises (above) from the conclusions
(below). We use the notation x : T to indicate that x has
type T . The notation τ(x) also denotes the type of x.

Rule R1 in Table 2 deals with the combine (c) operator
that creates vectors or lists after coercing constituent ele-
ments to the same supertype. The subtyping relation for c is:
NULL � raw � logical � integer � double � complex �
string � list � expr. This can induce subtyping in a natu-
ral manner on complex types [36].

We use the notation ∨ to denote a type join. So, for exam-
ple, ∨(integer, string) = string, ∨(vector(integer), string)

Table 2: Subset of Type Inference Rules

R1
a1 : Ta1 . . . ak : Tak

c(a1, . . . , ak) : θ(∨k
i=1Tai), θ ∈ {vector, list}

R2
a : Ta b : Tb OP ∈ {+,−, ∗}

a OP b : Ta ∨ Tb

R3
a : Ta b : Tb

a ˆ b : vector(double)

R4
a : Ta b : Tb OP ∈ {=, <−, <<−}

a OP b : Tb

R5
a : Ta b : Tb OP ∈ {[<−, [<<−}

a OP b : Ta ∨ Tb

R6
a : Ta

a[. . . ] : τ(c(a))

R7
a : Ta b : Tb

a:b : τ(c(a))

R8
a : Ta t ∈ {logical, integer, double}

as.t(a) : vector(t)

R9

a : Ta b : Tb

OP ∈ {numeric, rnorm, rbeta, runif, sqrt, floor, \}
a OP b : vector(double)

R10
a : Ta b : Tb OP ∈ {length, nrow, ncol}

a OP b : vector(integer)

R11
a : Ta OP ∈ {sample, rep}

OP (a, . . . ) : τ(c(a))

R12
paste(. . . ) : vector(string)

R13
a : Ta b : Tb c : Tc

if(a) b else c : Tb ∨ Tc

R14
a : Ta

return a : Ta

R15
a1 : Ta1 . . . ak : Tak

{a1 . . . ak} : Tak

= ∨(vector(integer), vector(string)) = vector(string), etc.
Rule R1 says that the c operator performs a type join on
the inputs and returns a vector or list.

The following example illustrates this rule and the sub-
typing relation described above. x is a vector constructed
from an integer (1L), logical (FALSE), double (2.3), string
(“a”), and complex (2+3i). str(x) shows that x is of type
string and all its elements have been coerced to this type.� �
1 > x <- c(1L,FALSE ,2.3,"a" ,2+3i)

2 > str(x) #returns object structure

3 chr [1:5] "1" "FALSE" "2.3" "a" "2+3i"� �
Rules R2 and R3 deal with arithmetic operations with the

same subtyping relation as above, but restricted to logical,
integer, double and complex. Rule R4 deals with full as-
signment whereas R5 describes sub-assignment where the
type of the LHS can change. For example, an assignment to
an element of a vector, matrix, or array will result in the
coercion of all constituent elements to the supertype. Rule
R7 describes the range operator (:). Rules R8–R12 describe
the results of various utility functions. Rules R13–R15 deal
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with control flow and code blocks.
To infer types, one needs to apply the rules presented in

Table 2 to each operation in the program repeatedly till a
fixed point is reached. We currently do inferencing only for a
subset of the types in R. These are logical, integer, double,
complex, string, vector, matrix, array and function types.

For code translation, we make a simplification to Rule R9
in Table 2 for the floor function. While its return type is
double in R, we consider it as integer so that more efficient
code can be generated. Thus, variable mid in the Binary
Search example (Listing 6) gets assigned type integer.

4.5 Other Analyses
Here we list a few other important analyses that are useful

for optimizing R programs.
Loop Invariants Analysis: This determines which com-

putations are invariant across all iterations of the enclosing
loop and then moves them out of the loop. This saves run-
time by avoiding repeated evaluation of invariant compu-
tations. The Unique Genotypes Test program (Listing 4)
can benefit from this analysis since allocations of genos and
genos.c can be hoisted out of the loop. We also discuss this
analysis in Section 5.2 in the context of vectorization.

Loop Analysis: This determines loop properties such as
number of iterations. This enables identification of vector-
ization opportunities. Other properties such as data depen-
dence and reuse help to identify loop tiling opportunities,
e.g., in the Matrix Multiplication program (Listing 7).

Array Index Analysis: This determines the indexing
values for array accesses. This analysis can be helpful to
other analyses as otherwise, the entire array will be treated
as one object leading to conservative information and lost
opportunities for optimization.

4.6 R-specific Challenges and Limitations
The R parser identifies entire control structures (if, for,

while) as single S-expressions that includes the bodies of the
constructs as other expressions. During CFG construction,
S-expressions need to be carefully broken into lists of simple
statements with each statement represented by a node.

R has the super-assignment operator (<<-) that allows
assignment to a variable in the enclosing environment (e.g.,
parent function). Fortunately, R is lexically scoped, so vari-
able names can be resolved statically provided that the code
is not modified dynamically.

R programs can overwrite code on-the-fly and modify the
execution environment. This invalidates program facts de-
termined by prior static analysis of the code. Disallowing
code modifications and having sealed environments [44] can
avoid these situations.

5. OPTIMIZATIONS
We now describe how the statically inferred program prop-

erties are used to optimize evaluation of a given R program.
We discuss three optimizations to illustrate the concepts.

5.1 Space Reuse
The goal of this optimization is to avoid unnecessary mem-

ory allocations in the R interpreter by reusing existing space
allocated to variables. The guiding principle is that allo-
cated space can be reused if there are no live aliases and
the variable is not live beyond this point (value not needed

again before re-definition). The live variable and alias anal-
yses provide the information necessary for this optimization.

We augment the S-expression structure with the following
fields to enable this optimization.

Dead-variable pointers, Not-live flag: The point-
ers identify variables in the RHS of a computation that are
dead (not live) after the computation. The Not-live flag is
set in the S-expressions of each of those variables to indicate
that their space can be reused.

No-alias flag: This flag is set if the destination variable
of the computation is not aliased, or its aliases are not live.
It indicates that a copy is not needed on a write to the
variable.

Original vector length: This flag is set during in-
place resizing of vectors. We need this flag so that book-
keeping operations by the garbage collector are not affected.
We perform in-place resizing only when the target vector
length is less than the original vector length.

The R interpreter already uses macros MAYBE SHARED,
defined as a check for the named field value to be greater
than 1, and NO REFERENCES, defined as a check for the
named field value to be equal to 0, during interpretation to
check if copies should be made. We augment these macros
to include information about program facts.

Functions involved in interpretation also need modifica-
tion to process the additional information. For example, the
main interpretation function, eval, checks variables against
dead variable information for that statement and sets flags
appropriately. Operator implementation functions need to
check for the possibility of reuse before new allocations.

Consider the Copy-On-Write program (Listing 2). The
basic data type in this program, double, occupies 8 bytes.
Thus, Line 2 allocates 8n bytes. Line 3 causes x and y to
be aliased. By default, Lines 4 and 5 cause new allocations
for copies requiring a maximum of 24n bytes of temporary
allocation (for large n) and 16n bytes of steady-state alloca-
tion (for x and y). However, neither x[2] nor y[2] have live
aliases, so the modifications can be done in place leading to
16n bytes reduction in temporary allocation and 8n bytes
of steady-state allocation. Some optimization opportunities
may be lost if the analysis cannot distinguish between dif-
ferent elements of the vectors leading to entire arrays being
treated as a single object.

Next, consider the Simple Arithmetic program (Listing 1).
Lines 4 and 5 each result in 8n bytes of steady-state allo-
cation. By default, Line 6 causes an additional 8n bytes
allocation for d leading to a total of 24n bytes of steady-
state allocation. However, neither x nor y are used beyond
the computation in Line 6, so their space can be reused by
the subtraction operator function and the modifications can
be done in-place. This method avoids allocation of tempo-
rary vectors of size 8n each for computations (x-xs) and
(y-ys). This approach also leads to savings in steady-state
allocation since d can use the space from the computations,
resulting in a total of 16n bytes of steady-state allocation.

To apply this optimization, we need to identify the last
use of source variables in the functions implementing various
operations, and create a mechanism for in-place computa-
tions. The latter is not always easy. For example, in the
Matrix Multiplication program (Listing 7) both A and B are
dead beyond the multiplication, but the default multiplica-
tion algorithm always allocates new space for the result.

We also need to add fields to the R S-Expression struc-
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ture. These changes increase the size of every S-Expression
object, thereby needing more memory and potentially re-
ducing cache performance. We maintain two copies of the R
interpreter, the unmodified one and one with the augmented
structures. The augmented interpreter is chosen only if the
space reuse optimization is applied.

5.2 Vectorization + Code Motion
The goal of this optimization is to identify program state-

ments that can be replaced with efficient vector equivalents
and move such statements outside enclosing loop(s) if neces-
sary. The reaching definitions analysis provides the informa-
tion necessary for simple applications of this optimization.
More advanced applications also need information about
variable types from type inferencing.

Consider the Simple Vectorization program (Listing 5).
The computation on Line 5 adds corresponding elements
vectors. If the number of iterations matches the object
lengths, then R allows specifying this entire sequence of
operation with a single statement, z = x + y. This state-
ment is more efficient since the looping over the elements is
implemented internally and does not require interpretation.
Moreover, the statement z = x + y can be moved outside
the loop as otherwise the same computations would be re-
peated on every iteration of the loop.

In general, a computation is loop invariant if it is a con-
stant or all reaching definitions of all variables involved in
the computation come from outside the loop or other loop-
invariant computations. Normally, z[i] = x[i] + y[i] is
not loop-invariant since the reaching definition of i is gener-
ated within the loop. However, after the vectorization trans-
formation this is no longer the case, and the computation
becomes loop invariant.

More sophisticated applications of this transformation re-
quire type information. For example, consider the computa-
tion t=t+(X[i]-Y[i]) within a loop. Vectorizing this code
to t=t+(X-Y) is incorrect since it changes the type of t (e.g.,
from a basic type to vector type). Insertion of additional
aggregation operations may be needed in such cases, e.g.,
t=t+sum(X-Y). Currently we do not handle this case.

5.3 C++ Code translation
The goal of this optimization is to translate the R program

(or a portion of it) to C++, which is then compiled into
a shared library, loaded by the R interpreter, and directly
executed without further interpretation. Type inferencing
provides the information necessary for this optimization.

We show two examples of the generated code below to
illustrate some features. Listing 8 shows a portion of the
translated code for the 2D Random Walk program. The out-
ermost function uses R S-Expressions (SEXPs) as parame-
ters and also return SEXPs. This enables the translated
code to interface with R for receiving inputs and returning
results. The function is called through R’s .Call interface.

We represent constructed types using C++ objects, e.g.
Vector. The r2c and c2r functions convert between R and
C++ representations. Conditional assignment may require
some code transformation. Line 4 of the R code shown in
Listing 6 gets translated to Lines 9–13 in the C++ code with
the assignment to delta placed in both the if and else code
blocks. Another transformation involves replacing calls to R
functions with C++ versions (e.g., c_numeric) for a subset
of functions and types. In other cases, functions provided by

R are called through our r_internal function that calls R’s
eval function to invoke and interpret the required function.

Automatic code translation involves some other challenges
that our system currently does not handle. This includes
renaming for variables that have context-dependent types,
handling nested function definitions, and recycling of values
for automatically extending the length of variables.

Listing 8: C++ code for 2D Random Walk� �
1 SEXP rw2d1(SEXP r_n, SEXP rho) {

2 int delta;

3 int i;

4 Vector <double > xpos;

5 Vector <double > ypos;

6 ext_prepare(rho);

7 int n = r2c_int(r_n);

8 xpos = c_numeric(n);

9 ypos = c_numeric(n);

10 for(i=2;i<=n;i++) {

11 if (c_gt(r2c_Vector_double_(r_

internal("runif", 1, c2r_int (1)))

, 0.5)) {

12 delta = 1;

13 } else {

14 delta = -(1);

15 }

16 ...

17 }

18 SEXP r_ret = r_internal("list", 2,

c2r_Vector_double_(xpos), c2r_

Vector_double_(ypos));

19 ext_finalize ();

20 return(r_ret);

21 }� �
6. EXPERIMENTS

In this section we evaluate the effectiveness of ROSA in
reducing execution time and memory footprint requirements
for evaluating R programs. We design our experiments to
answer the following questions.

1. How well does ROSA improve upon the standard open-
source version of R (CRAN R)? We answer this ques-
tion in Section 6.2.

2. How well does ROSA improve upon prior works that
also transparently improve upon standard R interpre-
tation? We answer this question by comparing ROSA
with two works—Microsoft R Open (Section 6.3) and
R Byte Code Compiler (Section 6.4).

6.1 Workloads and Setup
As our workload we used the R programs shown in List-

ings 1, 3, 6–15. These programs were used as workloads in
prior works on optimizing R [42], profiling R [40], R applica-
tions [37,38,50], and are key examples in books on R [33,47].
We have adapted some programs, e.g., to have larger input
data sizes. We show the inputs for each program in their
listings; e.g., the 2D Random Walk program, Listing 6, op-
erates on 10M elements (n <- 1e7). The Kmeans program,
Listing 3, uses the Airline on-time dataset [1].

We run our experiments on a 2.6 GHz dual-socket Intel
Xeon E5-2660 v3 (Haswell) server machine with 25 MB of
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Figure 3: ROSA improvements compared to CRAN R.
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Figure 4: ROSA improvements compared to MRO.

last-level cache, and 10 cores per socket, 256 GB of main
memory, and running Ubuntu 14.04.1 LTS. We measure
execution time as follows: For programs that have sys-

tem.time(...), it is the elapsed time reported in the out-
puts of those statements. For other programs, it is the
elapsed time for the entire program. We calculate speedup
as (baseline time)/(new time). We determine memory usage
by using the getrusage function in Linux and reading the
value of the maxrss (maximum resident set size) field in the
result. The memory savings for a workload execution is the
reduction in maximum resident set size (RSS) for the entire
program and is calculated as: 1− new max. RSS

baseline max. RSS
.

6.2 Improvements over CRAN R
Figure 3a shows improvements, relative to CRAN R-3.2.5 [20]

(baseline), with optimizations that are currently automated
in ROSA (i.e., those optimizations that are marked as ‘Au-
tomated’ in Table 1). In the figure, we plot each program as
a point/bubble and show the memory saving on the x-axis
and performance improvement on the y-axis.

As can be observed in Figure 3a, ROSA saved ˜50% mem-
ory for the Simple Arithmetic program through the space
reuse optimization (Section 5.1). It sped up the Simple
Vectorization program by ˜25× through the vectorization
and code motion transformations (Section 5.2).

C++ code was generated (Section 5.3) for the remaining
programs. All of these, except 2D Random Walk showed
large speedups. Euclidean Distance, with its three level
nested loops, showed the most speedup of nearly three or-
ders of magnitude over the baseline execution. 2D Random

Walk showed a smaller, but still significant performance im-
provement of ˜40%. It incurred overheads due to repeat-
edly calling the runif(1) function for execution within the
R interpreter. Vectorizing this call should provide further
speedups. Memory savings for compiled code were achieved
by reducing/eliminating interpretive overhead and associ-
ated creation of temporary objects, and having C++ ver-
sions of data structure allocations.

Figure 3b shows improvements, relative to the baseline,
with optimizations that require user input; i.e., those opti-
mizations that are marked as ‘User-Input’ in Table 1. ROSA
currently needs additional information from the user and
confirmation that the optimized program has the desired be-
havior. For example, the implementation of the matrix mul-
tiplication operator, %*%, is internal to the R interpreter and
not readily available to the static analyzer. The code frag-
ment for the implementation needs to be identified. Trans-
forming the implementation to have a more cache-friendly
access pattern, as discussed in Section 2.7, created a speedup
of 108 over the original implementation.

Strength reduction transformations are currently not fully
automated in our system. User input is needed to check and
apply the transformations. Two programs benefit from this
transformation—Kmeans and Unique Genotypes Test.

Kmeans suffers from string conversion overheads because
the function na.omit causes some rows in the input to be
omitted, as they have NA values, and triggers a recalculation
of row names leading to the sequence of computations de-
scribed in Section 2.3. The function as.matrix.data.frame

has an efficient path for matrix conversion that does not
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compute row names if the input data frame has them in the
form (NA,-n), which is the case with the original data frame
A. The overheads are eliminated through a strength reduc-
tion of data frame to matrix type by calling the as.matrix

function on the input table before the other computations
in the program. Memory footprint is also reduced because
the large number of string objects are not created.

The Unique Genotypes Test program also suffers from
string conversion overheads as discussed in Section 2.4. The
elements 0 and 1 passed to the sample function on line 7 in
Listing 4 are floats, changing them to 0L and 1L causes them
to be treated as integers improving performance by ˜61%.
Changing them to “0” and “1” causes them to be treated as
strings. This avoids the conversion altogether and more than
doubles the performance compared to the baseline. Further
optimizations for this program are possible by determining
that the repeated creations (and allocations) of genos and
genos.c are not necessary for every loop iteration and can
be hoisted out of the loop (code motion). This leads to an
additional ˜11% improvement in performance compared to
baseline. This analysis requires keeping track of loop bounds
and matrix dimensions that is not currently automated in
our system. We show all three variants of this program to-
gether in Figure 3b.

6.3 Improvements over MRO
Microsoft R Open (MRO) [7], formerly known as Rev-

olution R Open, is an open-source distribution of R that
enhances CRAN R by supporting multithreaded execution
for BLAS (Basic Linear Algebra Subprograms)/LAPACK
(Linear Algebra Package) math libraries. The current re-
lease of MRO is based on CRAN R 3.2.5, which is why we
also use that version of CRAN R throughout this paper so
that a fair comparison can be made. We run the prebuilt
64-bit distributions of MRO with Intel MKL (Math Kernel
Library) that provides the BLAS/LAPACK functions.

Parallel execution of select math functions in MRO+MKL
results in significant speedups over CRAN R (baseline). On
our 20-core Haswell server we observe the following speedups
(calculated as = CRAN R execution time

MRO execution time
) for MRO performance

benchmarks [19]: ˜162 (matrix crossproduct), ˜109 (Cholesky
factorization), 1.03 (QR decomposition), ˜29 (singular value
decomposition), ˜16 (principal component analysis), and 4.56
(linear discriminant analysis).

ROSA’s improvements are not subsumed by MRO. Fig-
ures 4a and 4b show ROSA’s improvements with respect
to MRO (baseline) for optimizations that ROSA currently
automates and for those that require user inputs. ROSA’s
improvements over CRAN R carry over to MRO as well.
ROSA focuses on optimizing single-threaded executions of
R code and its techniques are orthogonal to, and can be
used in conjunction with, optimizations such as paralleliz-
ing math libraries. Like CRAN R, MRO also fails to run to
completion for the Simple Arithmetic program (Listing 1)
when run with 9 billion elements.

6.4 Comparison with the byte code compiler
Both CRAN R and MRO include a byte code compiler [44].

Users can byte-compile functions in their programs into byte
codes. Executing these compiled functions cause their evalu-
ation by the bcEval function (instead of the eval function),
which implements a byte code interpreter. Commonly-used
constructs (e.g., for, while), arithmetic, and relational op-

erators have optimized, inlined implementations (e.g., C calls
for operations on scalar values) to speed up execution. Other
expressions will be interpreted by the eval function.

Figure 5 shows ROSA’s improvements compared to the
byte code compiler (BCC) with CRAN R and MRO. For
these results, the execution with BCC is treated as the
baseline. ROSA significantly outperformed BCC for many
programs—e.g., by almost two orders of magnitude for Eu-
clidean Distance. The gains are less compared to those over
full interpretation (Figure 3a) as BCC somewhat optimizes
execution. BCC uses R objects and is interpreter-based,
resulting in more overheads compared to execution of C++
code generated by ROSA. The only exception is the 2D Ran-
dom Walk program where BCC slightly improved (7.6%)
performance over ROSA due to conservative assumptions
by our current code generator.

BCC also does not do optimizations such as vectorization
or space reuse. So, ROSA saves more execution time and
memory footprint for the Simple Vectorization and Simple
Arithmetic programs respectively. BCC saves more memory
than ROSA for a few benchmarks, such as the Discrete Value
Time Series programs, likely due to more efficient memory
management of temporary objects for function returns.

6.5 Impact and Overheads
Our evaluation confirms that in many cases, ROSA can

significantly speed up R programs and/or save memory, com-
pared to both CRAN R and MRO. For optimizations it
currently automates, ROSA also improves upon the R byte
code compiler in either performance, or memory footprint,
or both. C++ code generation, vectorization, space reuse,
strength reductions, and loop tiling transformations are im-
portant optimizations for R program evaluations.

ROSA incurs overheads while performing static analysis of
the input program and transforming it for optimized execu-
tion. However, these overheads are small. The main reason
is that R programs are usually short in length (number of
lines of code) leading to small CFGs. For example, the CFG
for the Euclidean Distance program has only 28 nodes. CFG
construction for this program takes around 1 msec and static
analysis takes approximately an additional 5 msec. In gen-
eral, we expect that for most R programs, the analysis will
be completed within a few tens of msecs. A larger overhead
arises from compiling generated code, with optimizations (-
O2), and creating a shared library. This takes around 0.5
sec for our programs. Compilation overheads (5–25 msec)
exist for BCC as well. Overall, the performance improve-
ments far outweigh the overheads for original programs that
are long-running (as in this paper) and/or repeated multiple
times. We do not include analysis or compilation overheads
while reporting speedups over baselines.

7. RELATED WORK
A number of prior works have explored techniques to im-

prove R’s efficiency, e.g., by optimizing the interpreter, us-
ing compiled C/C++ code, etc. Some of these approaches
consider specific optimizations, e.g., improving vector oper-
ations [41], C/C++ code translation [27, 42, 43]. A number
of approaches, e.g., FastR [3, 31], pqR [11], Renjin [14], Ri-
poste [41], etc. have developed new interpreters/evaluation
engines for the R language to reduce inefficiencies.

A holistic framework for applying various analyses and
optimizations, and which also works with the standard GNU
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Figure 5: ROSA improvements, on optimizations it currently automates, relative to that by the byte code compiler (BCC).

R interpreter is missing. ROSA fills this gap. Additionally,
ROSA proposes a new type inferencing system for enabling
automatic code translation. We study optimizations, such as
space reuse and strength reduction, that enable processing
of larger datasets, but have not been hitherto well explored.

R includes interfaces that can be used to call external
C and Fortran code. The external code can be compiled
into shared libraries and loaded in R. ROSA uses this inter-
face to load and call compiled generated code. The Rcpp
package [25] allows integration of C++ code with R. These
packages provide interfaces and libraries, but do not auto-
matically translate R code of the user to C/C++/Fortran.
The user has to translate/write the code manually.

Garvin [27] developed RCC that compiles R to C code.
The generated code accesses the interpreter for object cre-
ation and incurs overheads due to time spent in variable def-
initions and lookups. In contrast, ROSA creates and man-
ages C++ versions of data structures. This avoids the need
to call the interpreter to manage or access variables. Type
inferencing is crucial to enable this capability.

Temple Lang et al. [42, 43] proposed compiling R code
to LLVM IR. This can then be optimized by LLVM and
re-targeted to different architectures. However, currently
the user needs to provide the types of local variables and
function signatures. Our proposed type inferencing system
can address this issue to enable automatic compilation.

Tierney [44] and Wang et al. [46] developed byte-code
compilers that generate opcodes for a stack-based virtual
machine. The byte code uses optimizations such as constant-
folding and alternate function implementations to improve
efficiency. In Section 6.4, we showed that ROSA improved
upon the byte code compiler freely available as part of the
GNU R distribution [20].

The RIOT system [50, 51] improves R’s I/O efficiency by
implementing an array storage manager and an optimiza-
tion engine. Ricardo [24] and RHIPE [28] integrate R with
Hadoop to speed up processing by leveraging the inherent
parallelism in data analysis workflows. These approaches are
complementary to the techniques that we use in this paper.

Although not the focus of this paper, we briefly mention
Julia [5], a newer and high-performing dynamic program-
ming language for scientific computing. Julia uses LLVM-
based JIT compilation techniques to speed up evaluation.
Julia’s syntax is similar to, but not identical with, that of
R. However, a simple syntactic translation to convert R pro-
grams to Julia and vice versa is not possible in general due

to semantic differences between the languages. For exam-
ple, if x is an array, then the assignment y = x has reference
semantics in Julia whereas it has value semantics in R with
copy-on-write implementation policy. This means that mod-
ifications to elements of y will be reflected in x in Julia but
not in R. Another difference is that on an out-of-bounds
assignment, arrays are automatically resized in R whereas
they are not in Julia. Unlike R, Julia does not support lazy
evaluation or the NULL type and has restrictions on logical
indexing capabilities [8]. Currently, Julia’s ecosystem seems
to be less active compared to that of R—currently there
are 1049 registered packages for Julia [6] compared to 8806
for R [2], and Julia ranks significantly below R in terms of
popularity according to multiple indices [12,13,21,23].

8. CONCLUSIONS AND FUTURE WORK
This paper presents ROSA, a framework for optimizing

the evaluation of R programs using static analysis tech-
niques. These analysis techniques determine program facts
that are then used to make R programs execute more effi-
ciently, either in terms of reduced execution time or reduced
memory footprint. Such savings enable analysis of larger
datasets on available hardware and within affordable run
times while also leveraging the rich processing features of
the R language and computing environment. These savings
are crucial in modern data platforms that increasingly pack-
age R as a crucial component that in many cases runs R code
inside the data platform. Thus, ROSA extends the ability
of such modern data platforms to use R for analyzing large
datasets. Our future work will focus on expanding the set
of analyses in ROSA and automating more transformations.
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APPENDIX
A. OVERHEAD ASSOCIATED WITH

INTERPRETATION
Figure 6 shows the detailed call sequence that is gener-

ated when interpreting the subassignment statement y[2]

<- 3 in the R program that is shown in the upper right
corner. One each line, the entries in blue show the main pa-
rameters passed to the function named on the left. We show
only the main functions in the figure—other helper functions
for symbol lookup and allocation of temporary variables are
omitted. The statement includes two operators: the assign-
ment operator (<-), implemented by the do_set function,
and the subassignment operator ([<-), implemented by the
do_subassign function. The R interpreter creates a tem-
porary variable ‘*tmp*’ during interpretation of this state-
ment. This temporary variable first points to the modified
object, and finally y is set to point to the object. An op-
timized compiler, on the other hand, would implement the
entire statement with a single memory access.

Now consider Listing 14 and how simple type inferencing
(followed by C/C++ code translation) can potentially help
to eliminate the interpretation overhead. Line 5 implies that
ctr is an integer and line 17 implies that ans is of type
double or complex (a resolution can be made by analyzing
whether or not the value of total is always ≥ 0). Since
nrow and ncol return values of type integer, nx, ny and
subsequently, i, j, posX, posY are inferred to be integers.
rnorm returns double values, so X and Y are inferred to be

eval y[2] <- 3
do_set .Primitive("<-") y[2] 3
applydefine .Primitive("<-") y[2] 3
eval 3
evalseq y
EnsureLocal y
eval y

assignCall `<-` y `[<-` `*tmp*` 2 <promise obj>
replaceCall `[<-` `*tmp*` 2 <promise obj>
allocList 4

eval y <- `[<-`(`*tmp*`, 2, value = 3)
do_set .Primitive("<-") y `[<-`(`*tmp*`, 2, value = 3)
eval `[<-`(`*tmp*`, 2, value = 3)
do_subassign .Primitive("[<-") `*tmp*` 2 <promise obj>
R_DispatchOrEvalSP .Primitive("[<-") `*tmp*` 2 <promise obj>
eval `*tmp*`
evalListKeepMissing 2 <promise obj>
eval 2
eval <promise obj>

do_subassign_dflt .Primitive("[<-") 5 6 7 8, 2, 3
SubAssignArgs 5 6 7 8, 2, 3
VectorAssign 5 6 7 8, 2, 3

y <- c(5,6,7,8)
y[2] <- 3

R program

Figure 6: A part of the function call sequence during inter-
pretation of subassignment statement.

constructed from type double.

B. OVERHEAD ASSOCIATED WITH
ATTRIBUTE EVALUATIONS

Consider the Kmeans program shown in Listing 3. The
kmeans function includes a statement X <- as.matrix(X)

that converts argument X (which is a dataframe object in this
example) into a matrix. For this program, it also converts
row numbers (integers) to row names (strings) to set the
“rownames” attribute for X. These conversions are problem-
atic if X has a large number of rows (˜150M in this example)
as costly integer-to-string conversions happen one-by-one for
each row. This type conversion dominates processing time
in the kmeans function.

na.omit A
........
xx <- object[!omit, , drop = FALSE]

attr “row.names”
do_attr
getAttrib “row.names”
allocVector n

if (any(omit > 0L)) {
temp <- setNames(seq(omit)[omit], attr(object, “row.names”)[omit])

do_attr
getAttrib “row.names”
allocVector n

........

kmeans ...
........
X <- as.matrix(X)

as.matrix.data.frame X
row.names.data.frame X
as.character attr(X,“row.names”)
do_asatomic 
ascommon vector<INTEGER> STRING
coerceVector vector<INTEGER> STRING

Expansion of row name info to 
vector<INTEGER> of length n

Expansion of row name info to 
vector<INTEGER> of length n

One-by-one coercion 
of integer to string

Figure 7: Type conversion during attribute computation.

Key portions of the detailed steps that are carried out
by R during the type conversion for the kmeans program
above is shown in Figure 7. The internal R matrix conver-
sion function, called as.matrix(...), is not always costly
for dataframe objects. A dataframe is a list of constituent
objects, each of which can be of a different type. Row
name information for dataframes is usually maintained in
compressed form ((NA,-n) for number of rows=n). This
form prevents the type conversions, and the associated per-
formance issue described above. However, the operation,
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na.omit(...), expands the row name information while omit-
ting rows that have NA (Not Available) entries. Figure 7
shows a subset of the related call sequence in more detail.
The expansion, along with allocation of large integer vectors
of size n, happens during the processing of the getAttrib

function. As Figure 7 shows, this processing and alloca-
tion happens twice. Next, when this object is passed to the
as.matrix(...) function, the type conversion of integers to
strings happens one-by-one for each integer.

C. EXAMPLE ANALYSIS
Here we show part of the IR (Figure 8), CFG (Figure 9),

and the inferred types of variables (Table 3) for the Eu-
clidean Distance program, Listing 14.

LANGSXP
SYMSXP for
SYMSXP k
LANGSXP

SYMSXP :
REALSXP 1
SYMSXP p

LANGSXP
SYMSXP {
LANGSXP

SYMSXP =
SYMSXP total
LANGSXP

SYMSXP +
SYMSXP total
LANGSXP

SYMSXP ^
LANGSXP

SYMSXP (
LANGSXP

SYMSXP -
LANGSXP

SYMSXP [
SYMSXP X
SYMSXP posX

LANGSXP
SYMSXP [
SYMSXP Y
SYMSXP posY

REALSXP 2

Figure 8: S-expression representation for lines 12–13 of the
Euclidean Distance program. INTSXP, REALSXP, SYM-
SXP, and LANGSXP represent integers, reals, symbols and
language structures respectively.

Table 3: Variable types for Euclidean Distance

Variable Type Variable Type
p0 integer n1 integer
n2 integer X matrix(double)
Y matrix(double) b vector(double)
nx integer ny integer
p integer ctr integer
i integer j integer

posX integer posY integer
total double k integer
ans vector(double) dist vector(double)

ctr = 1L

ans = numeric(nx * ny)

for(i in 1:nx)

for(j in 1:ny)

posX = i

posY = j

total = 0.0
for(k in 1:p)

ans[ctr] = sqrt(total)

ctr = ctr + 1L

posX = posX + nx

posY = posY + ny

ans

ENTRY

EXIT

total = total + (X[posX] – Y[posY])^2

p = ncol(X)

ny = nrow(Y)

nx = nrow(X)

Figure 9: CFG for function dist in Euclidean Distance pro-
gram, Listing 14 (Appendix).

D. PROGRAM LISTINGS
Here we list the R codes for the remaining programs that

we considered for our evaluation.

Listing 9: Binary Search [33]� �
1 binsearch <- function(x,y) {

2 n <- length(x)

3 lo <- 1

4 hi <- n

5 while(lo+1 < hi) {

6 mid <- floor((lo+hi)/2)

7 if (y == x[mid]) return(mid)

8 if (y < x[mid]) hi <- mid else lo

<- mid

9 }

10 if (y <= x[lo]) return(lo)

11 if (y < x[hi]) return(hi)

12 return(hi+1)

13 }

14
15 nn=1e6

16 x <- sort(sample (1:nn,nn,replace=TRUE)

)

17 y <- sample (1:nn,nn,replace=TRUE)

18 z <- numeric(nn)

19 system.time(for(i in 1: length(y)) z[i]

<- binsearch(x,y[i]))� �
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Listing 10: Exponential Smoothing [47]� �
1 exps <- function(x,alpha) {

2 s <- numeric(length(x) + 1)

3 for (i in seq_along(s)) {

4 if (i==1) {

5 s[i] <- x[i]

6 } else {

7 s[i] <- alpha * x[i-1] + (1-alpha

) * s[i-1]

8 }

9 }

10 s

11 }

12
13 n <- 1e7

14 x <- runif(n)

15 system.time(exps(x,0.5))� �
Listing 11: OddCount [33]� �

1 oddcount <- function(x) {

2 k <- 0L

3 for (n in x) {

4 if (n %% 2 == 1) k <- k+1

5 }

6 return(k)

7 }

8
9 n <- 1e8

10 x <- sample (1:1000 ,n,replace=TRUE)

11 system.time(b<-oddcount(x))� �
Listing 12: Discrete Value Time Series, version A [33]� �

1 preda <- function(x,k) {

2 n <- length(x)

3 k2 <- k/2

4 pred <- vector(length=n-k)

5 for(i in 1:(n-k)) {

6 if(sum(x[i:(i+(k-1))]) >= k2) pred[

i] <- 1 else pred[i] <- 0

7 }

8 return(mean(abs(pred -x[(k+1):n])))

9 }

10
11 n <- 1e7

12 y <- sample (0:1,n,replace=T)

13 system.time(preda(y ,1000))� �

Listing 13: Discrete Value Time Series, version B [33]� �
1 predb <- function(x,k) {

2 n <- length(x)

3 k2 <- k/2

4 pred <- vector(length=n-k)

5 sm <- sum(x[1:k])

6 if(sm >= k2) pred [1] <- 1 else pred

[1] <- 0

7 if(n-k >= 2) {

8 for(i in 2:(n-k)) {

9 sm <- sm + x[i+k-1] - x[i-1]

10 if(sm >= k2) pred[i] <- 1

else pred[i] <- 0

11 }

12 }

13 return(mean(abs(pred -x[(k+1):n])))

14 }

15
16 n <- 1e7

17 y <- sample (0:1,n,replace=T)

18 system.time(predb(y ,1000))� �
Listing 14: Euclidean Distance [42]� �

1 dist=function(X, Y) {

2 nx = nrow(X)

3 ny = nrow(Y)

4 p = ncol(X)

5 ctr = 1L

6 ans = numeric(nx * ny)

7 for(i in 1:nx) {

8 for(j in 1:ny) {

9 posX = i

10 posY = j

11 total = 0.0

12 for(k in 1:p) {

13 total = total + (X[posX] - Y[

posY])^2

14 posX = posX + nx

15 posY = posY + ny

16 }

17 ans[ctr] = sqrt(total)

18 ctr = ctr + 1L

19 }

20 }

21 return(ans)

22 }

23
24 p0 = 40L

25 n1 = 8000L

26 n2 = 1000L

27 X = matrix(rnorm(n1 * p0), n1 , p0)

28 Y = matrix(rnorm(n2 * p0), n2 , p0)

29 system.time(b <- dist(X, Y))� �
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