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SUMMARY 

This article reviews R, an open-source S-like high-level matrix programming language that can be used for 
econometric simulations and data analysis. Copyright ?C) 1999 John Wiley & Sons, Ltd. 

1. INTRODUCTION 

It used to be the case that someone doing applied econometrics could perform all required tasks 
using traditional econometrics software, such as SAS, such as SASHAZAM, SHAZAM, or TSP, to name only a few. 

Computer work was mainly a question of reading the manuals and identifying which of the pre- 

newly developed techniques are not available in econometric packages. In order to use such 

techniques, one needs to program them. This has led to an explosion in the availability of 
'econometric programming environments', that is, environments which provide users with a 

reasonably large number of econometric routines, but which also give users the flexibility to 

program new routines and modify existing ones. Such environments are a compromise between 
the greater flexibility offered by compiled languages such as C, +,+, and FORTRAN and the 

convenene traditional eon ometrics software. Well-known examples of econometric 

programming environments are GAUSS, Ox, and S-PLUS (Cribari-Neto, 1997) and MATLAB 

(Cribari-Neto and Jensen, 1997). Thi aerreves papeyet anr econometric programming 
environment: R. 

Universitaria, Recife/PE, 50740-540, Brazil. 

Contract/grant sponsor: CNPq. 
Contract/grant sponsor: FINEP. 

' For a quick tour of the S and S-PLUS environments, see Venables (1998). For a good guide to programming in S, see 
Chambers (1998). An older review of S-PLUS (for DOS and UNIX) is Hallman (1993). 
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2. AN OVERVIEW 

R was born when Ross Ihaka and Robert Gentleman, who were both interested in statistical 
computing and familiar with S, a programming language developed at the AT&T Bell 
Laboratories, became colleagues at the University of Auckland. Not pleased with the existing 
commercial software environment in their Macintosh teaching laboratory, Ihaka and Gentleman 
decided to make an effort to create their own programming environment. The initial goal was 'to 
demonstrate that it was possible to produce an S-like environment which did not suffer from the 
memory demands and performance problems which S has'. It was only later that they worked to 
turn R into a real and functional programming environment. 

The belief that it was possible to create an improved (more efficient and functional) S-like 
environment through the incorporation of ideas borrowed from the Scheme programming 
language appears to have been the cornerstone of the early efforts. According to the authors 
(Gentleman and Ihaka, 1997; Ihaka, 1997, both unpublished manuscripts), the' Scheme 
language (http://www.cs. indiana.edu/scheme-repository/home.html) was the basis of 
the experiment because of: (1) the availability of the source code of several Scheme interpreters, 
(2) its similarity to S, and (3) the availability of several books of reference, such as Abelson 
et al. (1985) and Kamin (1990). The initially developed interpreter (approximately one 
thousand lines of C code) is the backbone of the current version of R, providing a good deal of 
the language's functionality. When it was time to decide what type of user interface to create 
and how to implement the data structures necessary for the interpreter to be able to perform 
statistical work, Gentleman and Ihaka opted for an S-like syntax. 'This decision, more than 
anything else, has driven the direction that R development has taken' (Ihaka, 1997, unpublished 
manuscript). 

In August 1993, the first version of R was announced on the S-news mailing list and became 
available to the public by means of a few copies of the software at StatLib (http:// 
www.stat.cmu.edu/). Among the first people to show a pronounced interest in R was Martin 
Maechler of ETH Zurich. He joined Gentleman and Ihaka in the project and encouraged the 
release of the R source code under the terms of the Free Software Foundation's GNU Public 
License (June 1995).2 From that point on, the development of R was no longer a closed process. 
With the strong interest expressed in the new language and significant contributions by a 
number of people, the modest initial project of Gentleman and Ihaka developed into a fully- 
fledged programming language. Since mid-1997, R has been jointly developed by an 'R core 
team'.3 

A common definition of R is the following: 'R is an interpreted computer language designed for 
statistical data analysis.' More specifically, R is a programming environment which closely 
resembles the S programming language and its commercial enhanced version: S-PLUS (http: // 
www.mathsoft. com/splus/). Indeed, R is often described as 'a statistical system not unlike S'. 
The S-like appearance though masks Scheme ' s heavy influence in the underlying implementation 
and semantics (mainly in the lexical scoping). 

2 In order to read the licensing terms, type ?license at the R prompt. 
3The team consists of Doug Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka, Friedrich Leisch, 
Thomas Lumley, Martin Maechler, Paul Murrell, Heiner Schwarte, and Luke Tierney. These people are academic 
statisticians and/or computer scientists, and R is their 'hobby' project. 
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SOFTWARE REVIEW 

R, unlike S and C, which by default use 'static' scoping, has implemented a 'lexical' scoping.4 
One way to observe the difference between the two rules is by comparing them at the level of 
the treatment of 'free variables'. In R (and also in Scheme), the value of a variable that is neither a 
formal parameter (i.e. a function argument) nor a local variable is determined by the bindings 
that were active at the time the variable was created. What matters here is the variable's defining 
environment. In S and C, values of free variables are determined by a set of global variables. For a 
detailed discussion of the implementation of the R language, see Gentleman and Ihaka (1998, 
unpublished manuscript), and Ihaka and Gentleman (1996). 

The S and R syntaxes are so similar that the S 'blue book' (Becker et al., 1988) can be used as an 
(approximate) R manual. An R manual entitled Notes on R: A Programming Environmentfor Data 
Analysis and Graphics by William Venables, David Smith, Robert Gentleman and Ross Ihaka is 
available from CRAN (The Comprehensive R Archive Network, a collection of sites carrying 
identical R material; see below for the WWW address). This manual resulted from a set of notes 
on S and S-PLUS written by the first two of the above-mentioned authors. As pointed out in the 
preface of the manual, it incorporates a number of rather modest changes to account for some 
small differences in the S and R syntaxes. R does come with a fairly detailed help in HTML format 
which can be accessed by typing help. start () at the R prompt. It causes a Web browser to open 
the main R help index page. Help on a particular R function in text mode can be obtained by 
typing a question mark followed by the function name or by typing help followed by the function 
name in parentheses at the R prompt, as for example ?read.table or help(read.table). 

One of the main appealing features of R is undoubtedly the fact that it is free software, and 
hence can be obtained and distributed at no cost. Even the source code can be obtained from the 
R Web network (the CRAN master site is located in Vienna, Austria: http: //www. ci. tuwien. 
ac . at/R/). This makes R not only a good programming environment for academic and 
professional econometricians, but also an excellent teaching tool; students can obtain the 
program at no cost, install it on their computers at home and learn econometrics through hands- 
on practice. 

R is still in beta release, which means that there is still no official release of the environment. As 
mentioned earlier, the source code is available for download, and users can compile it under 
different operating systems. There are binaries available for Windows 95/98/NT, Linux, 
numerous versions of UNIX, and also for the Macintosh, although the latter is not as up-to-date 
as the R distributions for other platforms. Since R is written in ANSI C, installing it on Unix 
systems from the source code is in general automatic. This review was written using version 0.63.1 
on a Pentium II 266 MHz with 128 MB RAM running on Windows NT Workstation 4.0. 

Finally, since R is free software, it comes with no support. However, there are mailing lists 
which can be used to obtain expert advice from the members of the R core team and from 
experienced users. In order to subscribe to the r-help mailing list, one only needs to send an 
e-mail message to r-help-requestOstat .math. ethz. ch with the word subscribe in the body 
(not the subject) of the message. It is a good idea to check the R frequently asked questions 
(FAQs) available at http://www.stat. cmu. edu/R/CRAN/doc/FAQ/R-FAQ.html before posting 
to the mailing list. 

4Scoping refers to the rules by which variables, that is symbols and values, are associated. The interested reader is 
referred to Gentleman and Ihaka (1998, unpublished manuscript) and to Abelson et al (1995). Additionally, it should be 
noted that the concept is illustrated in R by means of an example if at the prompt one types demo (scoping). 
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2.1. Matrix operations 

One of the main advantages of a high-level programming language such as R is that users can 

program equations that require operations on matrices directly. That is, R comes with a set of pre- 
implemented routines to handle matrices. As an initial example, suppose we wish to generate a 
50 x 2 matrix X where the first column is a vector of ones and the second column consists of 

U(0, 1) random numbers: 

X <- matrix(cbind(l,runif (50)), 50, 2) 

(' <-' is the assignment operator.) The sum of all elements of (X'X)-1 can be easily obtained as 

sum(solve(t (X) o%*%X)) 

As with S-PLUS, t (X) yields the transpose of X, solve computes the inverse of a nonsingular 
matrix, and %*% is used for matrix multiplication, * being reserved for the Hadamard (direct) 
product of matrices. A function specifically tailored to efficiently invert symmetric matrices 
would be a nice addition to the language.5 

R is a flexible programming environment, and as such it allows users to write their own 
functions and call them as if they were calling native R functions. For example, suppose we wish 
to write a function that when invoked computes the determinant of a square matrix M. This can 
be accomplished as 

det <- function(M){ 

Re(prod(eigen(M, only.values = T)$values)) 

} 

After writing the det function, it can be invoked to compute, say, the determinant of (X'X)-~ as 

det (solve (t (X) ?/*%X) ) 

which yields 0 006394678 as the result. 
In order to print, say, the (13,2) element of X, all one has to do is to enter X[13,2] at the R 

prompt which results in 0 9028407. X [ ,2] prints the entire second column of X. 

2.2. Mathematical operations 

R comes with a wide range of built-in functions that can be used to perform many mathematical 

operations. Consider, for example, the polygamma functions. These are obtained by 
differentiating the loggamma function, log F(x). The first derivative of the loggamma function 
is the digamma function, denoted l/(x), whereas f'(x) represents the trigamma function, /"(x) 
denotes the tetragamma function, and so on. R includes built-in functions that evaluate the 

gamma, loggamma, digamma, trigamma, tetragamma, and pentagamma functions. For 

example, evaluating these functions at x = 0-5 is an easy task in R: 

c(gamma(0-5),lgamma(0-5),digamma(0-5) ,igagamma(0. 5),tetragamma(05), 

pentagamma(0 5)) 
[1] 1.772454 0.572365 -1-963510 4.934802 -16-828797 97-409091 

5 Both GAUSS and Ox have such a function. 
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the last line being the R output. The above polygamma functions are commonly encountered in 
econometric and statistical applications,6 and R practitioners can numerically evaluate them with 
ease. It is noteworthy that only the first two functions (gamma and loggamma) are available in S- 
PLUS. Some of the other special functions available for use in R are: beta function (beta), log beta 
function (Ibeta), binomial coefficients and their logarithms (choose and Ichoose), trigono- 
metric functions (cos, sin, tan, cosh, sinh, tanh, acosh, asinh, atanh), among others. 

Pre-implemented functions to evaluate Bessel and modified Bessel functions are not available 
in R, as is the case in, say, GAUSS, MATLAB and Ox. However, because R is open-source software, it is 
more or less straightforward for any competent C programmer to implement these functions, or 
any others. 

2.3. Graphics 

Most high-level matrix programming languages are capable of producing publication quality 
graphics, and R is no exception. Like S and S-PLUS, R comes with a range of built-in functions for 
handling two- and three-dimensional plots. As an illustration, suppose we wish to generate a 
vector of values y using the previously created X matrix as y = /lo + P, x + 8, where x is the second 
column of X, E is a vector of independent random errors each distributed as Af(0, 1), and fo and 
fl, are taken to be equal to one. Next, we wish to plot x against y, possibly as an initial visual 
inspection before regressing y on x. This can be accomplished as 

y <- X[ ,1] + X[ ,2] + rnorm(nrow(X)) 
plot (X[ ,2] , y, xlab = "x", ylab = "y", main = "A plot of y versus x") 

Three-dimensional graphics can be produced using the persp function whereas contour plots 
can be produced using the contour function. Future releases of R will include contour smoothing 
using B-splines for three-dimensional plots. Other useful graphics functions (whose names are 
self-explanatory) are barplot, boxplot, coplot, hist, image, pairs, piechart, qqnorm, 
qqplot. The best way to visualize the potential of R when it comes to producing a wide array of 
publication quality graphics is to type demo(graphics) at the R prompt and then navigate 
through a list of example plots. 

The R functions for producing graphics are currently undergoing a major revision. Future 
releases are expected to have even better graphics capabilities. 

2.4. Loops and other language constructs 

Like any other programming language, R has language constructs for performing recurrent 
computations, such as loops. The loop syntax is quite simple. For example, for(i in 1:10) 
print(log(i)) is a simple loop which prints log(l),log(2),...,log(10), where log denotes 
natural logarithm. Related constructs are while and repeat, with break being sometimes used 
within loops. It should be noted that S, S-PLUS, and R are notoriously slow when performing 
loops, although R seems to handle loops more efficiently than the others. Whenever possible, one 
should try to avoid loops by vectorizing the code. Some users may find this to be one of the main 
limitations of R. 

6See e.g. Cordeiro and McCullagh (1991), Cordeiro et al. (1997), and Cribari-Neto and Ferrari (1995), among others. 
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R allows a function to call itself recursively. A good and well-known example is the factorial 
function, which does not come implemented into R but can be easily written as 

factorial <- function (n) {if (n <= 0) 1 else n * factorial (n - 1)} 

After we write such a function, we can call it as we would call any built-in R function. For 
example, by entering factorial (10) at the prompt, we obtain the result 3628800. 

2.5. Some differences between R and S 

Although the R and S syntaxes are quite similar, there are a few minor differences which need to 
be pointed out. For example, in S the abs function, which computes the absolute value, works for 
both real and complex arguments, whereas in R it only works with reals. (In R, one should use the 
Mod function when working with complex numbers.) 

Random number generation in R is more flexible than in S or in S-PLUS since R allows users to 
select from three different random number generators (RNGs), namely: 'Wichmann-Hill' 
(Wichmann and Hill, 1982), 'Marsaglia-Multicarry', and 'Super-Duper'.7 The Marsaglia 
multiply-with-carry generator is one of the three RNGs implemented into Ox and has a period 
which exceeds 260. It was posted to the usenet news group sci.stat.math by Professor 
Marsaglia on 29 September, 1997. Super-Duper consists of Marsaglia's traditional RNG and is 
currently used by both S and S-PLUS. Its period is 4.6 x 1018. A call to RNGkind suffices to choose 
among these three RNGs. 

The Scheme-based lexical scoping of R implies a major difference in the way objects are stored: 
unlike in S, they are not saved as separate files but are kept internally (i.e., in memory). To that 
end, R dedicates a large amount of memory (specified by the user through the option - -vsize) 
which it manages as efficiently as possible. There is a clear advantage associated with this 
approach: speed gains in execution time. The other side of the coin though is that unless one 
resorts to the strategy of saving images every so often (using the save. image function), should R 
crash one will lose all of the 'current-to-the-moment-of-the-crash' work. Also, while it is 
appealing to have functions that can maintain local state (i.e. preserve state information between 
function calls), the related disadvantage is that there is no straightforward (or simple) way of 
saving a function in R. 

With respect to base level memory management, R is an environment that may allow a running 
program to use more memory than is physically present in the computer.8 When a session starts, 
R occupies a portion of the computer's memory and manages it with a mark-sweep/compaction 
strategy known as 'garbage collection'. This process is set to motion when the Basic Language 
Elements (BLEs), where information is stored, in the memory heap are exhausted. First, the 
BLEs that are deemed necessary are marked, and, subsequently, the BLE array is swept and all 
unmarked array elements are put back to the list of available BLEs and moved in contiguous 
memory (compaction). This is where R and S/S-PLUS differ: the latter environments do not 
release memory properly and as a result, the amount of memory a running program uses can 
grow without a bound, thus slowing down the execution. The downside, however, of R's 'more 

7There are currently plans to add even more random number generators in future releases of R. 
8 This is the case for programs that partition the executing image into memory 'pages', keep only a small subset of them in 
active memory and engage in a process of copying memory pages to and from the disk, as the need arises (process that is 
called 'paging'). With disk access being slow in comparison to memory access, performance is negatively related to paging 
and programs that need to page a lot are considerably slowed down. 
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reasonable' base level memory management is the following: if the amount of memory allocated 
at the start of the session is not sufficient for the running program to complete its execution, the 
job will be terminated at the point where all allocated memory is exhausted. As a result, the user 
will lose all the work performed until that point and will have to start all over, specifying what he 
or she believes to be enough memory for the program to execute. 

Overall, it is safe to say that R is an 'implementation' of S since, with the exception of lexical 
scoping and its above-mentioned implications, the former follows the latter as closely as possible. 
Other occasional differences are intentional and aim at improving the language's clarity and at 
facilitating debugging. 

2.6. Packages for R 

The standard distribution of R includes the following libraries: base (the R base package of 
functions), eda (exploratory data analysis), modreg (modern regression: smoothing and local 
methods), mva (multivariate analysis), and stepfun (step functions, including empirical 
distributions). 'Eda' contains functions for robust fitting, median polish and smoothing whereas 
'mva' provides code for principal components, canonical correlations, hierarchical clustering and 
metric multidimensional scaling analysis, among other things. 

Many more add-on packages exist for R at the CRAN contributed code area. MASS is the main 
package from Venables and Ripley (1997). The extension package boot contains code and 
datasets from Davison and Hinkley (1997), and bootstrap is the package of functions that goes 
along with Efron and Tibshirani (1993). There are also R packages for kernel smoothing and 
density estimation (KernSmooth), for logspline density estimation (logspline), for spline 
regression (splines), for quantile regression and related rank statistics (quantreg), for solving 
quadratic programming problems (quadprog), for maximum likelihood estimation of 
fractionally integrated processes (fracdiff), for dynamic system estimation (dse), for cluster 
analysis (cluster), and for survival analysis (survival4), to name only a few of the additional 
add-ons to R available from CRAN.9 

It is noteworthy that some of these add-on libraries can be quite useful in supplementing and 
extending the R capabilities. A prime example is the case of 'mean absolute deviation' (MAD) 
regression. Unlike S-PLUS, R does not come with an llfit function for estimating l1 (i.e. MAD) 
regression models. However, this can be accomplished in R by using the quantreg library, since 11 
regression is a special case of quantile regression. The quantreg library has been developed by 
Roger Koenker and was ported to R by Kjetil Halvorsen. For a detailed account of algorithms for 
quantile regression estimation, see Portnoy and Koenker (1997). 

3. A WEB INTERFACE TO R 

The Rweb is a Web interface to R and is available at http://www.math.montana.edu/Rweb/. 
Users can run R programs from the Rweb home page in batch mode and obtain the output from 
the program (which may include graphics) directly in their Web browsers. Basically, the user 
types in the code, clicks on a 'submit' button, and a page with the results (analysis and graphics) 
is returned. The source code and other relevant information for those who would like to set up 
their own Rweb page can be obtained from the Rweb resources home page, currently at http:// 
9 For a complete list, see http://www. stat. cmu. edu/R/CRAN/src/contrib/PACKAGES. html. 
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www.math.montana.edu/Rweb/Resources.html. The Rweb interface has been set up by Jeff 
Banfield, an Associate Professor of Statistics at Montana State University. 

4. A SIMPLE MONTE CARLO EXAMPLE 

Suppose we wish to write a simple Monte Carlo simulation program that simulates a normal 
linear regression model, for teaching purposes. In particular, suppose we wish to replicate the 
simulation results on pages 219-223 of Griffiths et al. (1993). The model under study is a simple 
normal linear regression model: y, = Pl + ~2xt +et, where e, - /(0, o2), the et's being 
independent. The goal is to use the ordinary least squares estimates b1 = 7-3832, b2 = 0-2323 
and a2 = 46-853 (given on page 219) as the true parameter values and then perform a simulation 

experiment. At the end of the simulations, we will produce a histogram of the different values of 
b2, thus replicating the figure on page 222 of the book. This is a nice introductory exercise since it 
teaches students how to perform a simple Monte Carlo simulation. The R function given below 
performs such a task. 

MC.sim <-function (r = 1000){ 
RNGkind(kind = "Super-Duper") 
if (r <= 0) 

stop("The number of replications (r) must be positive!") 
betal <- 7-3832; beta2 <-0 2323; sigma2 <-46 852 
x <- c(25 83, 34-31, 42-5, 46-75, 48-29, 48-77, 49-65, 51-94, 

54-33, 54.87, 56*46, 58-83, 59-13, 60-73, 61-12, 63-1, 
65-96, 66.4, 70-42, 70-48, 71-98, 72, 72-23, 72-23, 73.44, 
74-25, 74-77, 76 33, 81*02, 81-85, 82.56, 83-33, 83 4, 
91-81, 91*81, 92-96, 95-17, 101-4, 114-13, 115-46) 

T <-length(x); x <-as.matrix(x); X <- cbind(1, x) 

y.simulated <- betal + beta2 * X , 2] + matrix (rnorm(T 
r, mean = 0, sd = sqrt(sigma2)), T, r) 

estimate <- solve(t(X) %*% X) %,*% t (X) %,*% y.simulated 
hist(estimate[2, ], col = "gray", breaks = 12, xlab = "b2", 

main = "histogram of b2", ylab = "frequency", xlim = c(0, 0-5)) 
cat("\nMean estimate: ") 
return(mean(estimate)) 

} 
The function can now be invoked from the R prompt as MC. sim() (it will use the default number 
of replications, 1000). The output of the call is a histogram, which appears in the graphics 
window, and the mean of all estimates b2, which is displayed in the commands window. The 

histogram produced by R is given in Figure 1. Note that the above Monte Carlo program does not 
make use of any loops. Instead, the code has been vectorized in order to run more efficiently. It is 

possible to write a similar program that is loop-based by replacing the line that starts with 
'estimate <-' by 

M <- solve(t(X) %,*%/ X) %*% t (X) 
estimate <-matrix(0, 2, r) 
for(i in l:r){ 

estimate[, i] <-M %*/% y.simulated[, i] 
} 
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b2 

Figure 1. A histogram 

Table I. Execution times for the OLS Monte Carlo program 

r R (vec) R (loop) S-PLUS (vec) S-PLUS (loop) 

1000 0-56 0.59 0.39 3-92 
5000 1.26 1.60 0-81 18-50 
10000 2.37 2.92 1.35 36.64 
50000 10-64 14-03 5.79 205-98 

5. SPEED EVALUATION 

We used the simulation program in the previous section to assess the efficiency of R. It was run on 
R version 0.63.1 for Windows and on S-PLUS 4.5 for Windows for r = 1000, 5000, 10000, 50000. 
The timings (in seconds) for R and S-PLUS for both the vectorized and the loop-based program 
are given in Table I. All times are the smallest execution time from three consecutive runs.10 R and 
S-PLUS are roughly equally efficient when the code is vectorized, S-PLUS being a bit faster. 
However, when the program is based on a simulation loop where r estimations are performed 
sequentially, R becomes much faster than S-PLUS. For example, when we set the number of 
replications to 50,000, R is nearly 15 times faster than S-PLUS. 

The above example suggests that R is more efficient than S-PLUS in handling loops. In order to 
investigate this further, consider an example drawn from Cribari-Neto and Jensen (1997) which 
consists of using a double loop to create a matrix M of dimension n x n whose (i, j) entry equals 
i +j. Of course, double looping is not an efficient way of constructing M. Our purpose is simply 
to use this example as a measure of loop speed. We have modified Cribari-Neto and Jensen's 

l0The program was slightly altered to run under S-PLUS 

Copyright ? 1999 John Wiley & Sons, Ltd. 

327 

J. Appl. Econ. 14: 319-329 (1999) 

This content downloaded from 169.229.32.137 on Thu, 8 May 2014 21:38:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


F. CRIBARI-NETO AND S. G. ZARKOS 

(1997) code by adding the computation of the sum of all elements of M. The R (and S-PLUS) code 
is: 

loop.matrix <- function(n){ 
M <-matrix(0, n, n) 
for(i in l:n){ 

for(j in 1:n){ 
M[i, j] <-i+j 

} 
} 

return(sum (M)) 
} 

The execution times for different values of n are given in Table II. All entries are seconds and 
(again) represent the best of three consecutive timings. 

Once more, R is faster than S-PLUS, more so as the loop length gets larger. For example, when 
the dimension of M is 500 x 500, R is over twice as fast as S-PLUS. Even though R runs faster than 
S-PLUS when handling loops, it can still be substantially slower than other econometric 
environments. As a frame of reference, we have run this program using Ox for Windows version 
2.0a on the same hardware. The execution times for n = 100,..., 500 were 0-05, 0-20, 0-45, 0 80, 
1 17 second, respectively. If we take n = 500 for example, we see that Ox is 22 times faster than R 
(and nearly 47 times faster than S-PLUS). 

Of course, users may want to consider low-level programming languages such as C (Cribari- 
Neto, 1999), C++ (Eddelbiittel, 1996) and FORTRAN for tasks which are very computer-intensive, 
such as, for example, the simulation of a double bootstrapping scheme. An alternative strategy is 
to code the most computer intensive part of the program in C and link the compiled C code to R. 

6. CONCLUDING THOUGHTS 

There is an increasing demand for econometric programming environments which combine the 
ease of use of traditional statistical software with the flexibility provided by a programming 
language. S-PLUS has been the primary choice in the statistics community and has been gaining 
some ground among econometricians recently. R is an appealing alternative to S-PLUS for two 
reasons. First, it is free software. Second, it tends to be more efficient in terms of speed and 
memory usage than S-PLUS, benefiting from the use of a different 'underlying engine', and yet 
with nearly the same syntax. At the moment, R is still under being beta tested, but we believe it 
has the potential to become a useful tool for data analysis, programming, and teaching in the 
econometrics community. 

Table II. Execution times for a double loop program 

n R S-PLUS 

100 1.03 1.06 
200 4.11 4.38 
300 9.20 15-58 
400 16-29 32-63 
500 25-74 54-77 
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