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Preface

Inventory control has emerged as a leading application of operations research. The

Survey of Current Business reported that the dollar value of inventories in the USA

alone exceeded $1.3 trillion at the end of 2010. Cost-effective control of inventories

can cut costs significantly, and contribute to the efficient flow of goods and services

in the economy. Many techniques can be brought to bear on the inventory manage-

ment problem. Linear and nonlinear programing, queueing, and network flow

models, are some examples. However, most inventory control packages are based

on the methodology of inventory theory. Inventory theory is an important subfield

of operations research that addresses the specific questions: when should an order

be placed, and for how much?

Inventory theory had its roots in the well-known EOQ formula, first discovered

by Ford Harris nearly 100 years ago (Harris 1915). Harris, working as a young

engineer at the Westinghouse Corporation in Pittsburgh, was able to see that a

simple formula for an optimal production batch size could be obtained by properly

balancing holding and set-up costs. The EOQ formula, first derived by Harris, is

amazingly robust – it still serves as an effective approximation for much more

complex models. After Harris’s work, the development of inventory theory was

largely stalled until after World War II. The success of operations research in

supporting the war effort was the spur needed to get the field off the ground. It

seems that the newsvendor model of inventory choice under uncertainty was

developed around this time, although it appears that the fundamental approach of

balancing overage and underage costs under uncertainty was really first derived by

Edgeworth (1888) in the context of banking.

Serious research into stochastic inventory models began around 1950. An early

landmark paper was Arrow, Harris, and Marschak (1951). They were the first

researchers to provide a rigorous analysis of a multiperiod stochastic inventory

problem. Three significant books on the theory stimulated substantial interest in

inventory theory research: Whitin (1957), Arrow, Karlin, and Scarf (1958), and

Hadley andWhitin (1963). The 1960s saw an explosion of papers in inventory theory.
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None of the books or hundreds of papers on inventory control written up to this

time addressed an important class of problems. In every case, a tacit assumption

was made that items stored in inventory had an infinite lifetime and unchanging

utility. That is, once placed into stock, items would continue to have the same value

in the marketplace in perpetuity. In truth, there is a very large class of inventories

for which this assumption is wrong. These include inventories subject to decay,

obsolescence, or perishability.

Let us define our terms. Decay (or exponential decay) means that a fixed fraction

of the inventory is lost every planning period (this has also been referred to as age

independent perishability). In continuous time, this translates to the size of the

inventory decreasing at an exponential rate. Very few real systems are accurately

described by exponential decay. For example, suppose the local grocery store

discards an average of 10% of its production each day due to spoilage. In actuality

though, some days it will not have to discard any product and some days it will have

to discard much more than 10%. Assuming a 10% loss each day is a convenient

approximation of a more complex process. Exponential decay has been proposed as

a model for evaporation of volatile liquids, such as alcohol and gasoline. But how

often are these substances stored in open containers, so that they would be subject to

evaporation? Radioactive substances (such as radioactive drugs) are one example of

true exponential decay. However, inventory management of radioactive substances

is a rather specialized narrow problem. While exponential decay has been proposed

as an approximation for fixed life perishables, there are better approximations.

A related problem is that of managing inventory subject to obsolescence. What

distinguishes obsolescence from perishability is the following. Obsolescence typi-

cally occurs when an item has been superseded by a better version. Electronic

components, maps, and cameras are examples of items that become obsolete.

Notice that in each case, the items themselves do not change. What changes is

the environment around them. As a result of the changing environment, the utility

of the item has declined. In some cases, the utility goes to zero, and unsold items are

salvaged or discarded. However, it is often the case that utility does not decrease to

zero. Declining utility can result in declining demand and/or decreasing prices. For

example, older electronic items, such as a prior generation of PDAs or hard drives,

continue to be available for some time, but are typically sold at reduced prices.

From a modeling perspective, the point at which an item becomes obsolete cannot

be predicted in advance. Hence, obsolescence is characterized by uncertainty in the

useful lifetime of the product.

Finally, we come to perishability. We assume the following definition of perish-

ability throughout this monograph. A perishable item is one that has constant utility

up until an expiration date (which may be known or uncertain), at which point the

utility drops to zero. This includes many types of packaged foods, such as milk,

cheese, processed meats, and canned goods. It also includes virtually all pharma-

ceuticals and photographic film. This writer’s interest in this area was originally

sparked by blood bank management. Whole blood has a legal lifetime of 21 days,

after which time it must be discarded due to the buildup of contaminants. When

uncertainty of the product lifetime is assumed, the class of items one can model is
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substantially larger. For example, perishable inventory with an uncertain lifetime

can accurately describe many types of obsolescence.

Considering the large number of perishable items in the economy, why was this

important class of problems ignored for so long? The short answer is that the

problems are difficult to analyze. Interestingly, Pete Veinott, a major figure in

inventory theory, wrote his doctoral thesis (in the early 1960s) on various deter-

ministic models for ordering and issuing perishable inventories, but never published

this work. When this writer inquired why, he said that the notation was so complex

and awkward, and he preferred putting the work aside and move on to other

problems (Veinott 1978). Van Zyl’s (1964) important work on the two period

lifetime case with uncertain demand remained largely unknown, as it was never

published in the open literature. (This author became aware of Van Zyl’s work after

completing his doctoral thesis on the subject).
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Chapter 1

Preliminaries

Contents

1.1 Deterministic Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Periodic Review Versus Continuous Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Periodic Review Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 A One Period Newsvendor Perishable Inventory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Deterministic Demand

When demand is known with certainty, the problem of managing perishables is

straightforward for the most part. Consider first the basic EOQ model. Suppose the

demand rate is l, the fixed cost of placing new orders is K, and the holding cost per

unit time is h. Then, it is well known that the optimal order size is

Q� ¼

ffiffiffiffiffiffiffiffiffi

2Kl

h

r

and the optimal time between placement of orders is T� ¼ Q�=l. Suppose now

that the item has a usable lifetime of m. All deliveries are assumed to be of fresh

units only. Then, there are two cases: (a) T� � m and (b) T� >m. In case (a) the

optimal policy remains the same, since in each order cycle, all units are consumed by

demand before they expire. However, in case (b) ifQ� is ordered at the beginning of

the cycle, there will be positive inventory on hand at time m, which will have

outdated and must be discarded, and a new order placed at that time. Notice,

however, that if we reduce the order quantity from Q� ¼ lT� to Q ¼ lm<Q�,

then the cycle length will remain at m, no units will expire and holding costs will

be reduced, since average inventory will be reduced from Q�=2 to Q=2: Hence, the
modification of the standard EOQ model to include perishability is straightforward.

However, not all deterministic perishable inventory problems are solved so

easily. In particular, consider the deterministic nonstationary production planning

S. Nahmias, Perishable Inventory Systems, International Series in Operations
Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_1,
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problem. Demands over an n period planning horizon are known constants, say

ðr1; r2; . . . ; rnÞ. Costs include holding, hi, set-up, Ki, and marginal production cost,

Ci in each period. Then, Wagner and Whitin (1958) showed (in the infinite lifetime

case) that an optimal policy has the following structure. If starting inventory is zero,

then the order quantity in each period is either zero or exact requirements – namely,

the sum of requirements in the current to some future period. Furthermore, an

optimal policy only orders in periods when the starting inventory is zero. As a

consequence of this result, one only needs to determine the periods in which

ordering takes place, thus reducing the calculations significantly.

It turns out that an exact requirements policy may not be optimal when perish-

ability is introduced. A counterexample is presented in Chap. 7, and methods for

resolving this problem is discussed there. When demand is nonstationary, finding

optimal order policies for a fixed life inventory is not trivial. However, the vast

majority of the research on ordering policies for perishables has focused on

stochastic demand – a significantly more difficult problem.

1.2 Periodic Review Versus Continuous Review

Demand uncertainty and (fixed life) perishability combine to result in challenging

and complex problems. Stochastic perishable inventory problems fall into one of

the two basic categories: periodic review or continuous review.

Most of the research in inventory theory assumes inventory levels are reviewed

periodically. This means that the state of the system (on hand inventory) is known

only at discrete points in time. This assumption is appropriate, for example, if

inventory levels are checked once a day, once a week, etc. The landmark collection

of Arrow et al. (1958) assumed periodic review in every case considered, and set the

stage for much of the subsequent research on inventories. From a practice point of

view, it is probably true that most inventory systems were periodic review 50 years

ago. Today, however, point-of-sale scanners and automated inventory control

systems have made true continuous review more common.

There are two reasons why continuous review has grown in importance. First,

with automated inventory control systems computers can automatically trigger

orders when inventory levels hit predetermined levels. Second, continuous review

models often are able to provide simple approximations to complex problems that

are difficult to solve with periodic review formulations.

Perishable inventory research has also evolved along the two separate tracks of

periodic review and continuous review. The periodic review track generalizes the

kind of models considered by Arrow et al. (1958), among many others, to incorpo-

rate perishability. The continuous review track is largely an outgrowth of the theory

of queues with impatient servers. An impatient customer is one who leaves the

queue if they have not been served by a fixed time. Queueing models with impatient

customers are discussed in detail in Chap. 9.

2 1 Preliminaries



1.3 Periodic Review Preliminaries

As noted earlier, we assume that the on hand inventory level is known only at

discrete points in time, which are labeled periods. Assume that periods are

numbered 1, 2, . . . . Demands in successive periods are not known, but are assumed

to be random variables, D1; D2; . . . with a known probability distribution. For

convenience, assume that the demand distribution is continuous with cumulative

distribution function (CDF) F(x) and probability density function (PDF) f(x). (Note

that basic results have been shown to carry over to the discrete demand case as well.

Also, virtually all of the results carry over to nonstationary demand. Stationarity of

the demand distribution is assumed for notational convenience.)

Assume that new orders are always of fresh units that have a usable lifetime of

m periods. A little reflection should convince the reader that it is necessary to track the

entire age distribution of the on hand inventory in order to determine outdates each

period. Hence, the system state is described by a vector x ¼ ðxm�1; xm�2; . . . ; x1Þ
where xi is the number of units on hand with i useful periods of life remaining. Note

that there are many notation options for the state vector. The state could be defined in

terms of age rather than remaining lifetime and the vector could be numbered in order

of oldest to youngest rather than vice versa, as we have done. This convention was

chosen to reflect that aging occurs in the direction left to right, like the flow of the

English language, and that the decision variable, y, can be equated to xm and placed

in the proper position in the vector. Note that x0 would represent the number of units

on hand that have just expired or outdated. We do not need to carry x0 in the state

vector since outdated units are assumed to leave the system. We use the convention

throughout that boldface x is the vector of on hand inventories of each age level,

and x ¼
P

m�1

i¼1

xi is a scalar quantity representing the total on hand inventory.

The necessity to define a vector valued state variable is only one of the things

that separate the perishable inventory problem from the conventional nonperish-

able problem. As we see, several other concerns arise as a result of perishability.

One is the sequence that items are issued to meet demand. Note that there is a

substantial literature on optimal issuing policies independent of the ordering

problem. The appropriate assumption concerning issuing policies depends on

whether the producer or consumer chooses which items satisfy demand. If the

producer determines the issuing policy, it is clearly in his interest to issue items on

an oldest first basis (known in accounting parlance as FIFO for first in first out). If

the consumer determines the issuing policy, it is likely that the consumer will

choose the freshest items, resulting in units issued in last in first out (LIFO)

sequence. The vast majority of the perishable inventory literature assumes FIFO

issuing, and we do so as well unless stated otherwise. Clearly, FIFO is most cost-

efficient and results in minimum outdating. (A third alternative, which might be

appropriate in some contexts, is to issue the items in a random order. To our

knowledge, random issuing policies have not been considered in the context of

optimal ordering policies for perishables.)

1.3 Periodic Review Preliminaries 3



If items are issued according to FIFO, then the aging and demand processes

travel in opposite directions. To see what this means, consider the representation of

the system state in Fig. 1.1. Bins are labeled m�1, m�2, . . ., 1, where the contents

of bin i are the number of units on hand with i useful periods of life remaining.

At the end of each period, all contents of a bin are moved to the next lower bin, and

the contents of bin 1 outdate and must be discarded (or salvaged). Because of the

FIFO assumption, demand depletes first from bin 1, then from bin 2, etc. Excess

demands may be lost or backordered. If excess demands are backordered, then this

is reflected in a negative value of xm�1.

Consider now the ordering policy. The optimal number of units to order each

period is function of the state vector, x. We represent this function as y(x). As we
see, y(x) is a complex nonlinear function of the state variable x. We assume that

costs are assessed in the usual way for finite horizon periodic review inventory

systems. At the end of each period, the total inventory is determined. If it is positive,

assess a holding cost of h per unit held per period. If it is negative (which occurs

when excess demands are backordered), assess a cost of p per unit of unsatisfied

demand. Furthermore, we assume a marginal order cost only. That is, there is a cost

of c per unit ordered. For now, assume that there is no fixed order cost. Finally, we

come to the issue of how to assess the cost for items that must be discarded due to

outdating. Let y be the cost of disposing of outdated units. If D is the demand in a

period, then the number of units outdating at the end of the period when starting

inventories are x, is maxðx1 � D; 0Þ, which we represent as ðx1 � DÞþ.
We now face the first issue. The astute reader will notice that the outdating cost,

yEðx1 � DÞþ, is independent of the decision variable y. That means that any single

period model ignores the effects of outdating. In fact, one would need to churn

through at least m periods of a dynamic programing formulation before the

outdating penalties of over ordering would be reflected in the optimal order policy.

(This was, in fact, the approach taken in Fries 1975.)

Suppose, however, that one were interested in constructing a one period model

that reflected the outdating penalties of over ordering. How could this be done? Let

D1;D2; . . . represent demands in successive periods, starting with the current

period. Then, the current order, y, would not outdate until m periods into the future,

if it had not been consumed by demand by that time. Consider how one would

determine the expected outdating of the current order y, m periods into the future.

Fig. 1.1 The flow of demand
and product in an FIFO
fixed life perishable inventory
system
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Define the following sequence of random variables:

R1 ¼ yþ
X

m�1

i¼1

xi

R2 ¼ ½yþ
X

m�1

i¼2

xi � ðD1 � x1Þ
þ�þ

R3 ¼ ½yþ
X

m�1

i¼3

xi � ðD2 þ ðD1 � x1Þ
þ � x2Þ

þ�þ

etc.

Then, Ri represents the amount of the current inventory on hand i periods into the

future, assuming we start with x and order y. Each value of Ri is a random variable,

since it is a function of the future demands. Note the use of the imbedded + functions

are necessary to keep track of units lost due to outdating.

To simplify the notation, define the following sequence of random variables

recursively:

B0 ¼ 0

B1 ¼ ðD1 � x1Þ
þ

.

.

.

Bj ¼ ðDj þ Bj�1 � xjÞ
þ
for 1 � j � m� 1:

Interpret the random variable Bj as the total unsatisfied demand in period j after

depleting the on hand inventory that would have outdated in period j. It follows that

Rm ¼ ½y� ðDm þ Bm�1Þ�
þ

represents the amount of the current order y, that outdates in m periods.

The goal of the analysis is to compute the expected value of Rm and incorporate

this into the one period model.

DefineGnðt; wn�1Þ ¼ PfDn þ Bn�1 � tÞ where wi ¼ ðxi; xi�1; . . . ; x1Þ:Note that
wm�1 ¼ x.

We present the first result without proof, which is based on a standard induction

argument. Details can be found in Nahmias (1972).

Theorem 1.1. Gnðt; wn�1Þ ¼
Ð

t

0

Gn�1ðvþ xn�1; wn�2Þf ðt� vÞdv.

Theorem 1.2. EðRmÞ ¼
Ð

y

0

Gmðt; xÞdt

Proof. It is well known that for any nonnegative random variable, X, the expecta-

tion may be computed two ways:

EðXÞ ¼

ð

1

0

xf ðxÞdx ¼

ð

1

0

½1� FðxÞ�dx:

1.3 Periodic Review Preliminaries 5



We have PfRm � tg ¼ Pfy� ðDm þ Bm�1Þ � tg ¼ 1� Gmðy� t; xÞ for t � 0

Since Rm is a nonnegative random variable, the result follows from the second

representation of the expected value above (after a change of variable). ☐

1.4 A One Period Newsvendor Perishable Inventory Model

Most readers should be familiar with the classic newsvendor model. A newsvendor

must decide at the beginning of each day how many newspapers to purchase. Daily

demand is not known, but is assumed to follow a known probability distribution.

Let y be the number of newspapers purchased and D the demand. There are two

penalties: overage (ordering too much) and underage (ordering too little).

Now, let us consider the perishable inventory model. The penalty for ordering

too much is the future penalty of outdating, at y per unit, and the penalty for

ordering too little is penalty cost for excess demand, at p per unit. Hence, a sensible

expected one period cost function for the perishable inventory problem is:

Lðx; yÞ ¼ p

ð

1

xþy

½t� ðxþ yÞ� f ðtÞdtþ y

ð

y

0

Gmðt; xÞdt:

It is easy to show that Lðx; yÞ is convex in y (and is strictly convex as long

f ðtÞ> 0 for all t> 0: Hence, the optimal order quantity, y, for this simple model

satisfies:

@Lðx; yÞ

@y
¼ �pð1� Fðxþ yÞÞ þ yGmðy; xÞ ¼ 0:

The optimal one period solution, say y�ðxÞ; is a nonlinear function of the entire

state vector, x. In this case, y�ðxÞ> 0 for all positive real vectors x. In addition, as

we see in the analysis of the dynamic problem, y�ðxÞ is decreasing in each

component of the state vector, x, but at less than unit rate.

Somewhat sharper results can be obtained when we add holding and marginal

order costs.

Theorem 1.3. Suppose that in addition to penalty and outdate costs, we also

include marginal order cost at c per unit ordered, and a unit holding cost, h, charged

against each unit on hand at the end of the period. Then, the optimal solution has

the following form: If x< �x order y�ðxÞ solving

cþ hFðxþ yÞ þ pð1� Fðxþ yÞÞ þ yGmðy; xÞ ¼ 0

where �x solves

cþ hFð�xÞ � pð1� Fð�xÞÞ ¼ 0:

If x � �x, no order is placed.

6 1 Preliminaries
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