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CHAPTER1
Introduction

This book is about using linear programming to help making better de-

cisions in the organizational context. Linear programming is one of the

most useful and extensively used techniques of operational research.

It is one special case of mathematical optimization, where the func-

tion to optimize and the constraints are linear functions of the decision

variables. Posterior developments of linear programming include the

possibility of defining some decision variables as integer, widening the

range of problems solvable by linear programming considerably.

This is the first of a series of books that act as a support of a pedagog-

ical program based on teaching operational research techniques with

R. R [6] is a programming language and software environment for sta-

tistical computing and graphics. The R language is widely used among

statisticians and data miners for developing statistical software and data

analysis. It is an open source programming environment, that runs in

most operating systems. The strength of R comes from the large num-
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ber of libraries developed by a lively community of software developers.

Within the context of this teaching program, the objective of this book

is twofold. On the one side, our aim is to present a pragmatic intro-

duction to linear programming, presenting through practical examples

the possibilities of modeling through linear programming situations of

decision making in the organizational context. On the other side, some

libraries to solve linear programming models are presented, such as

Rglpk [7], lpSolve [1] and Rsymphony [3].

To achieve these aims, the book is organized as follows. In 2.6.2 are

developed the basics of linear programming: an introduction of formu-

lation of linear models, an introduction to the features of the optimum

of a linear program, including duality analysis, and to the formulation

and solution of linear programs including integer variables. The chap-

ter concludes with an introduction to the use of linear programming

solvers in R.

chapter 3 includes ten optimization problems solvable by linear pro-

gramming. Each of the problems is presented with the following struc-

ture: after presenting the problem, a solution through linear program-

ming is offered. Then we show how to solve the problem in R. There

are several ways to parse a problem into a R solver. In this collection of

problems, we show how to use a standard linear programming syntax,

such as CPLEX, and how to enter the model using the R syntax.

We have chosen to use online resources to keep this book updated.

In http://bit.ly/1zkJpVw we are keeping a list of linear programming

solvers, together with its implementation in R. We encourage readers to

send us a comment if they find the information incomplete or not up-

dated. All the source code used in this book is stored and updated in the
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https://github.com/jmsallan/linearprogramming GitHub repository.

We hope that this book becomes a valuable resource to everybody in-

terested in a hands-on introduction to linear programming, that helps

to reduce the steep of the learning curve to implement code including

resolution of linear programming models.
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CHAPTER2
Solving linear programming

2.1 An introduction to linear programming

Linear programming is one of the most extensively used techniques in

the toolbox of quantitative methods of optimization. Its origins date

as early as 1937, when Leonid Kantorovich published his paper A new

method of solving some classes of extremal problems. Kantorovich devel-

oped linear programming as a technique for planning expenditures and

returns in order to optimize costs to the army and increase losses to

the enemy. The method was kept secret until 1947, when George B.

Dantzig published the simplex method for solving linear programming

[2]. In this same year, John von Neumann developed the theory of

duality in the context of mathematical analysis of game theory.

One of the reasons for the popularity of linear programming is that it

allows to model a large variety of situations with a simple framework.
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Furthermore, a linear program is relatively easy to solve. The simplex

method allows to solve most linear programs efficiently, and the Kar-

markar interior-point methods allows a more efficient solving of some

kinds of linear programming.

The power of linear programming was greatly enhanced when came the

opportunity of solving integer and mixed integer linear programming.

In these models all or some of the decision variables are integer, re-

spectively. This field was opened by the introduction of the branch and

bound method by Land and Doig. Later other algorithms have appear,

like the cutting plane method. These techniques, and the extension of

computing availability, have increased largely the possibilities of linear

programming.

In this chapter we will provide a brief introduction to linear program-

ming, together with some simple formulations. We will also provide

an introduction to free software to solve linear programming in R, in

particular the R implementations of lp_solve and GLPK through the li-

braries lpSolve, Rglpk and Rsymphony, among others. chapter 3 intro-

duces some applications of linear programming, through a collection of

solved linear programming problems. For each problem a posible solu-

tion through linear programming is introduced, together with the code

to solve it with a computer and its numerical solution.
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2.2 Linear programming formulation

2.2.1 The structure of a linear program model

Roughly speaking, the linear programming problem consists in optimiz-

ing (that is, either minimize or maximize) the value of a linear objective

function of a vector of decision variables, considering that the variables

can only take the values defined by a set of linear constraints. Linear

programming is a case of mathematical programming, where objective

function and constraints are linear.

A formulation of a linear program in its canonical form of maximum is:

MAX z = c1x1 + c2x2 + · · ·+ cnxn

s. t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

. . .

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

xi ≥ 0

The model has the following elements:

• An objective function of the n decision variables xj . Decision vari-

ables are affected by the cost coefficients cj

• A set of m constraints, in which a linear combination of the vari-

ables affected by coefficients aij has to be less or equal than its

right hand side value bi (constraints with signs greater or equal or

equalities are also possible)
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• The bounds of the decision variables. In this case, all decision

variables have to be nonnegative.

The constraints of the LP define the feasible region, which is the set of

values that satisfy all constants. For a LP of n variables, the feasible

region is a n-dimensional convex polytope. For instance, for n = 2 the

feasible region is a convex polygon.

The LP formulation shown above can be expressed in matrix form as

follows (cap bold letters are matrices and cap small bold letters are

column vectors):

MAX z = c
′
x

s. t. Ax ≤ b

x ≥ 0

Using the same matrix syntax, we can write the canonical form of mini-

mum of a linear program as:

MIN z = c
′
x

s. t. Ax ≥ b

x ≥ 0

Another usual way to express a linear program is the standard form.

This form is required to apply the simplex method to solve a linear

program. Here we have used OPT to express that this form can be

defined for maximum or minimum models.

OPT z = c
′
x

s. t. Ax = b

x ≥ 0
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An additional condition to use the simplex method is that righthand

side values b ≥ 0. All other parameters are not restricted in sign.

2.2.2 A simple example of a PL model

Let’s consider the following situation:

A small business sells two products, named Product 1 and Product 2.

Each tonne of Product 1 consumes 30 working hours, and each tonne of

Product 2 consumes 20 working hours. The business has a maximum of

2,700 working hours for the period considered. As for machine hours,

each tonne of Products 1 and 2 consumes 5 and 10 machine hours,

respectively. There are 850 machine hours available.

Each tonne of Product 1 yields 20 Me of profit, while Product 2 yields

60 Me for each tonne sold. For technical reasons, the firm must pro-

duce a minimum of 95 tonnes in total between both products. We need

to know how many tonnes of Product 1 and 2 must be produced to

maximize total profit.

This situation is apt to be modeled as a PL model. First, we need to

define the decision variables. In this case we have:

• P1 number of tonnes produced and sold of Product 1

• P2 number of tonnes produced and sold of Product 2

The cost coefficients of these variables are 20 and 60, respectively. There-

fore, the objective function is defined multiplying each variable by its

corresponding cost coefficient.
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The constraints of this LP are:

• A constraint WH making that the total amount of working hours

used in Product 1 and Product 2, which equals 30P1 + 20P2, is

less or equal than 2,700 hours.

• A similar constraint MH making that the total machine hours

5P1 + 10P2 are less or equal than 850.

• A PM constraint making that the total units produced and sold

P1 + P2 are greater or equal than 95.

Putting all this together, and considering that the decision variables are

nonnegative, the LP that maximizes profit is:

MAX z = 20P1 + 60P2

s.t. WH) 30P1 + 20P2 ≤ 2700

MH 5P1 + 10P2 ≤ 850

PM) P1 + P2 ≥ 95

P1 ≥ 0, P2 ≥ 0

2.2.3 A transportation problem

Let’s consider a transportation problem of two origins a and b, and three

destinations 1, 2 and 3. In Table 2.1 are presented the cost cij of trans-

porting one unit from the origin i to destination j, and the maximal

capacity of the origins and the required demand in the destinations.

We need to know how we must cover the demand of the destinations at

a minimal cost.
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1 2 3 capacity

a 8 6 3 70

b 2 4 9 40

demand 40 35 25

Table 2.1: Parameters of the transportation problem

This situation can be modeled with a LP with the following elements:

• Decision variables of the form xij , representing units transported

from origin i to destination j

• An objective function with cost coefficients equal to cij

• Two sets of constraints: a less or equal set of constraints for each

origin, limiting the units to be transported, and a greater of equal

set of constraints representing that the demand of each destina-

tion must be covered.

The resulting LP is:

MIN z = 8xa1 + 6xa2 + 3xa3 + 2xb1 + 4xb2 + 9xb3

s.a. ca) xa1 + xa2 + xa3 ≤ 70

cb) xb1 + xb2 + xb3 ≤ 40

d1) xa1 + xb1 ≥ 40

d2) xa2 + xb2 ≥ 35

d3) xa3 + xb3 ≥ 25

xij ≥ 0
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2.2.4 Transformations of elements of a LP

Transforming the objective function of a linear program is straightfor-

ward. A MAX problem can be transformed into MIN (and vice versa)

changing the sign of the cost coefficients:

MIN z = c
′
x ⇔ MAX z′ = −c

′
x

Nonequality constraints can be transformed changing the signs of all

terms of the constraint:

ai1x1 + · · ·+ ainxn ≤ bi ⇔ −ai1x1 − · · · − ainxn ≥ −bi

A nonequality constraint can be turned into equality by adding nonneg-

ative variables:

ai1x1 + · · ·+ ainxn ≤ bi ⇒ ai1x1 + · · ·+ ainxn + si = bi

ak1x1 + · · ·+ aknxn ≥ bk ⇒ ak1x1 + · · ·+ aknxn − ek = bk

si ≥ 0, ek ≥ 0

Less than equal constraints are turned into equality by adding slack

variables si, and greater than equal constraints by excess variables ek.

If the original constraints have to be maintained, both types of variables

have to be nonnegative.

Finally, decision variables can also be transformed. A nonpositive vari-

able xi can be replaced by a nonnegative variable x
′

i making x
′

i = −xi.

A variable unconstrained in sign xk can be replaced by two nonnegative

variables x
′

k, x
′′

k by making xk = x
′

k − x
′′

k .
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2.2.5 Turning a PL into standard form

A usual transformation of a PL model is turning all constraints into

equalities adding slack and excess variables. This is required to solve

the PL using any version of the simplex algorithm. For instance, the

model defined in subsection 2.2.2 can be put into standard form mak-

ing:

MAX z = 20P1 + 60P2

s.t. WH) 30P1 + 20P2 + hW = 2700

MH 5P1 + 10P2 + hM = 850

PM) P1 + P2− eP = 95

P1, P2, hW , hM , eP ≥ 0

where hW and hM are equal to the working and machine hours, re-

spectively, not used in the proposed solution, and eP equals the total

production made over the minimal value required of 95. Note than

slack and excess variables have to be also nonnegative.

In the standard form, any constraint that was an inequality in the orig-

inal form will have its corresponding slack or excess variable equal to

zero when it is satisfied with the equal sign. Then we will say that this

constraint is active. If its corresponding slack or excess variable holds

with the inequality sign, its corresponding variable will be positive, and

the constraint will be not active.
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2.3 Solving the LP

The most extended procedure to solve the LP is the simplex algorithm,

developed by George Bernard Dantzig in 1947. This method takes ad-

vantage of the fact that the optimum or optima of a LP can be found

exploring its basic solutions. A basic solution of a LP in standard form

of n variables and m constraints has the following properties:

• has n−m nonbasic variables equal to zero: xN = 0

• has m basic variables greater or equal to zero: xN ≥ 0

When one or more basic variables equal zero, the solution is called

degenerate. The basic solutions correspond to the vertices of the feasible

region.

The strategy of the simplex method consists in:

• Finding an initial basic solution

• Explore the basic solutions moving in the direction of maximum

local increase (MAX) or decrease (MIN) of the objective function

• Stop when an optimal solution is found

The software that solves LPs uses usually the simplex algorithm, or the

revised simplex algorithm, a variant of the original simplex algorithm

that is implemented more efficiently on computers. Other algorithms

exist for particular LP problems, such as the transportation or trans-

shipment problem, or the maximum flow problem.
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Another approach to solve LPs is the interior point algorithm, developed

by Narenda Karmarkar [4]. This algorithm has been proven as partic-

ularly useful in large problems with sparse matrices. Contrarily to the

simplex approach, this algorithm starts from a point inside the feasible

region, and approaches the optimum iteratively.

2.4 Duality in linear programming

Let’s consider a MAX linear program in its canonical form:

MAX z = c
′
x

s. t. Ax ≤ b

x ≥ 0

The following linear program, expressed in MIN canonical form, is the

dual of the program above, called the primal:

MIN w = u
′
b

s. t. u′
A ≥ c

′

u ≥ 0

Note that each variable of the dual is linked with a constraint of the

primal, since both share the same bj parameter. Accordingly, each con-

straint of the dual is linked to a variable of the primal, as both share the

same ci parameter.

If the linear program is not expressed in canonical form, it can be turn

into canonical form using the transformations defined in section 2.2.

More conveniently, the dual can be obtained applying the transforma-

tions defined in Table 2.2 for the original formulation of the model.
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